ترغب بنشر مسار تعليمي؟ اضغط هنا

Note on the Painleve V tau-functions

146   0   0.0 ( 0 )
 نشر من قبل Renat Gontsov
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study some properties of tau-functions of an isomonodromic deformation leading to the fifth Painleve equation. In particular, here is given an elementary proof of Miwas formula for the logarithmic differential of a tau-function.



قيم البحث

اقرأ أيضاً

71 - Masatoshi Noumi 2016
We investigate the structure of $tau$-functions for the elliptic difference Painleve equation of type $E_8$. Introducing the notion of ORG $tau$-functions for the $E_8$ lattice, we construct some particular solutions which are expressed in terms of e lliptic hypergeometric integrals. Also, we discuss how this construction is related to the framework of lattice $tau$-functions associated with the configuration of generic nine points in the projective plane.
121 - Rolando Perez Iii 2020
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of $pi$. We also prove that if f and g are functions in the Nevanlinna class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g up to the multiplication of a unimodular constant.
Let $mathsf M$ and $mathsf M _{mathsf S}$ respectively denote the Hardy-Littlewood maximal operator with respect to cubes and the strong maximal operator on $mathbb{R}^n$, and let $w$ be a nonnegative locally integrable function on $mathbb{R}^n$. We define the associated Tauberian functions $mathsf{C}_{mathsf{HL},w}(alpha)$ and $mathsf{C}_{mathsf{S},w}(alpha)$ on $(0,1)$ by [ mathsf{C}_{mathsf{HL},w}(alpha) :=sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M chi_E(x) > alpha}) ] and [ mathsf{C}_{mathsf{S},w}(alpha) := sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M _{mathsf S}chi_E(x) > alpha}). ] Utilizing weighted Solyanik estimates for $mathsf M$ and $mathsf M_{mathsf S}$, we show that the function $mathsf{C}_{mathsf{HL},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}})^{-1}}(0,1)$ and $mathsf{C}_{mathsf{S},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}^ast})^{-1}}(0,1)$, where the constant $c_n>1$ depends only on the dimension $n$.
We prove a Fredholm determinant and short-distance series representation of the Painleve V tau function $tau(t)$ associated to generic monodromy data. Using a relation of $tau(t)$ to two different types of irregular $c=1$ Virasoro conformal blocks an d the confluence from Painleve VI equation, connection formulas between the parameters of asymptotic expansions at $0$ and $iinfty$ are conjectured. Explicit evaluations of the connection constants relating the tau function asymptotics as $tto 0,+infty,iinfty$ are obtained. We also show that irregular conformal blocks of rank 1, for arbitrary central charge, are obtained as confluent limits of the regular conformal blocks.
128 - Yasuhiko Yamada 1998
Explicit determinant formulas are presented for the $tau$ functions of the generalized Painleve equations of type $A$. This result allows an interpretation of the $tau$-functions as the Plucker coordinates of the universal Grassmann manifold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا