ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Convolutional Coding with Shared Entanglement: General Structure

306   0   0.0 ( 0 )
 نشر من قبل Mark Wilde
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a general theory of entanglement-assisted quantum convolutional coding. The codes have a convolutional or memory structure, they assume that the sender and receiver share noiseless entanglement prior to quantum communication, and they are not restricted to possess the Calderbank-Shor-Steane structure as in previous work. We provide two significant advances for quantum convolutional coding theory. We first show how to expand a given set of quantum convolutional generators. This expansion step acts as a preprocessor for a polynomial symplectic Gram-Schmidt orthogonalization procedure that simplifies the commutation relations of the expanded generators to be the same as those of entangled Bell states (ebits) and ancilla qubits. The above two steps produce a set of generators with equivalent error-correcting properties to those of the original generators. We then demonstrate how to perform online encoding and decoding for a stream of information qubits, halves of ebits, and ancilla qubits. The upshot of our theory is that the quantum code designer can engineer quantum convolutional codes with desirable error-correcting properties without having to worry about the commutation relations of these generators.



قيم البحث

اقرأ أيضاً

We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum conv olutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.
124 - Mark M. Wilde 2008
Quantum error-correcting codes will be the ultimate enabler of a future quantum computing or quantum communication device. This theory forms the cornerstone of practical quantum information theory. We provide several contributions to the theory of qu antum error correction--mainly to the theory of entanglement-assisted quantum error correction where the sender and receiver share entanglement in the form of entangled bits (ebits) before quantum communication begins. Our first contribution is an algorithm for encoding and decoding an entanglement-assisted quantum block code. We then give several formulas that determine the optimal number of ebits for an entanglement-assisted code. The major contribution of this thesis is the development of the theory of entanglement-assisted quantum convolutional coding. A convolutional code is one that has memory and acts on an incoming stream of qubits. We explicitly show how to encode and decode a stream of information qubits with the help of ancilla qubits and ebits. Our entanglement-assisted convolutional codes include those with a Calderbank-Shor-Steane structure and those with a more general structure. We then formulate convolutional protocols that correct errors in noisy entanglement. Our final contribution is a unification of the theory of quantum error correction--these unified convolutional codes exploit all of the known resources for quantum redundancy.
We discuss quantum capacities for two types of entanglement networks: $mathcal{Q}$ for the quantum repeater network with free classical communication, and $mathcal{R}$ for the tensor network as the rank of the linear operation represented by the tens or network. We find that $mathcal{Q}$ always equals $mathcal{R}$ in the regularized case for the samenetwork graph. However, the relationships between the corresponding one-shot capacities $mathcal{Q}_1$ and $mathcal{R}_1$ are more complicated, and the min-cut upper bound is in general not achievable. We show that the tensor network can be viewed as a stochastic protocol with the quantum repeater network, such that $mathcal{R}_1$ is a natural upper bound of $mathcal{Q}_1$. We analyze the possible gap between $mathcal{R}_1$ and $mathcal{Q}_1$ for certain networks, and compare them with the one-shot classical capacity of the corresponding classical network.
239 - Gus Gutoski 2009
Multi-party local quantum operations with shared quantum entanglement or shared classical randomness are studied. The following facts are established: (i) There is a ball of local operations with shared randomness lying within the space spanned by the no-signaling operations and centred at the completely noisy channel. (ii) The existence of the ball of local operations with shared randomness is employed to prove that the weak membership problem for local operations with shared entanglement is strongly NP-hard. (iii) Local operations with shared entanglement are characterized in terms of linear functionals that are ``completely positive on a certain cone K of separable Hermitian operators, under a natural notion of complete positivity appropriate to that cone. Local operations with shared randomness (but not entanglement) are also characterized in terms of linear functionals that are merely positive on that same cone K. (iv) Existing characterizations of no-signaling operations are generalized to the multi-party setting and recast in terms of the Choi-Jamiolkowski representation for quantum super-operators. It is noted that the standard nonlocal box is an example of a no-signaling operation that is separable, yet cannot be implemented by local operations with shared entanglement.
285 - M. A. Yurischev 2015
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analyti cal forms (Q_{pi/2} and Q_0) and an intermediate subdomain for which, to extract the quantum discord Q_theta, it is required to solve in general numerically a one-dimensional minimization problem to find the optimal measurement angle thetain(0,pi/2). Hence the quantum discord is given by a piecewise-analytic-numerical formula Q=min{Q_{pi/2}, Q_theta, Q_0}. Equations for determining the boundaries between these subdomains are obtained. The boundaries consist of bifurcation points. The Q_{theta} subdomains are discovered in the generalized Horodecki states, in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, in the heteronuclear dimers in an external magnetic field. We found that transitions between Q_{theta} subdomain and Q_{pi/2} and Q_0 ones occur suddenly but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher derivatives of discord function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا