ﻻ يوجد ملخص باللغة العربية
We generalize in several directions our recent analysis of the limitations to the use of the effective field theory approach to study dark matter at the LHC. Firstly, we study the full list of operators connecting fermion DM to quarks and gluons, corresponding to integrating out a heavy mediator in the $s$-channel; secondly, we provide analytical results for the validity of the EFT description for both $sqrt{s}=8$ {rm TeV} and $14$ {rm TeV}; thirdly, we make use of a MonteCarlo event generator approach to assess the validity of our analytical conclusions. We apply our results to revisit the current collider bounds on the ultraviolet cut-off scale of the effective field theory and show that these bounds are weakened once the validity conditions of the effective field theory are imposed.
We propose a new approach to the LHC dark matter search analysis within the effective field theory (EFT) framework by utilising the K-matrix unitarisation formalism. This approach provides a reasonable estimate of the dark matter production cross sec
We investigate the Beyond Standard Model discovery potential in the framework of the Effective Field Theory (EFT) for the same-sign $WW$ scattering process in purely leptonic $W$ decay modes at the High-Luminosity and High-Energy phases of the Large
New strong interactions at the LHC may exhibit a richer structure than expected from simply rescaling QCD to the electroweak scale. In fact, a departure from rescaled QCD is required for compatibility with electroweak constraints. To navigate the spa
We study the impact of anomalous gauge boson and fermion couplings on the production of $W^+W^-$ pairs at potential future LHC upgrades and estimate the sensitivity at $sqrt{S}=14$ TeV with $3~ab^{-1}$ and $sqrt{S}=27$ TeV with $15~ab^{-1}$. A genera
We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft phy