ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Parton Interactions at the LHC

247   0   0.0 ( 0 )
 نشر من قبل Zolt\\'an Nagy
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the recent progress in the theoretical description and experimental observation of multiple parton interactions. Subjects covered include experimental measurements of minimum bias interactions and of the underlying event, models of soft physics implemented in Monte Carlo generators, developments in the theoretical description of multiple parton interactions and phenomenological studies of double parton scattering. This article stems from contributions presented at the Helmholtz Alliance workshop on Multi-Parton Interactions at the LHC, DESY Hamburg, 13-15 September 2010.



قيم البحث

اقرأ أيضاً

With short resumes and highlights the discussions in the different working groups of the workshop MPI@LHC 2012 is documented.
The production mechanism of quarkonia states in hadronic collisions is still to be understood by the scientific community. In high-multiplicity $p+p$ collisions, Underlying Event (UE) observables are of major interest. The Multi-Parton Interactions ( MPI) is a UE observable, where several interactions occur at the partonic level in a single $p+p$ event. This leads to dependence of particle production on event multiplicity. If the MPI occurs in a harder scale, there will be a correlation between the yield of quarkonia and total charged particle multiplicity. The ALICE experiment at the Large Hadron Collider (LHC) in $p+p$ collisions at $sqrt{s}$ = 7 and 13 TeV has observed an approximate linear increase of relative $J/psi$ yield ($frac{dN_{J/psi}/dy}{<dN_{J/psi}/dy>}$) with relative charged particle multiplicity density ($frac{dN_{ch}/dy}{<dN_{ch}/dy>}$). In our present work we have performed a comprehensive study of the production of charmonia as a function of charged particle multiplicity in $p+p$ collisions at LHC energies using pQCD-inspired multiparton interaction model, PYTHIA8 tune 4C, with and without Color Reconnection (CR) scheme. A detail multiplicity and energy dependent study is performed to understand the effects of MPI on $J/psi$ production. The ratio of $psi(2S)$ to $J/psi$ is also studied as a function of charged particle multiplicity at LHC energies.
60 - M. Bansal , S. Bansal , R. Kumar 2016
Multiple-parton interactions play a vital role in hadron-hadron collisions. This paper presents a study of the multiple-parton interactions with simulated Z + jets events in proton-proton collisions at a centre-of-mass energy of 13 TeV. The events ar e simulated with POWHEG followed by hadronization and parton-showering using PYTHIA 8. The events with dimuon invariant mass in the range of 60--120 GeV are selected for the analysis. The charged particle jets, having minimum transverse momentum of 5 GeV and absolute pseudo-rapidity less than 2, are used to construct the observables for measurements of the multiple-parton interactions. The proposed observables and phase-space region presented in this paper found to have enhanced sensitivity to multiple-parton interactions. The increased sensitivity to MPI will be lead to precise constraints on the parameters of the MPI models.
We examine present data for double parton scattering at LHC and discuss their energy dependence from its earliest measurements at the ISR. Different models for the effective cross-section are considered and their behavior studied for a variety of sel ected final states. We point out that data for pp ->4 jets or pp -> quarkonium pair indicate the effective cross-section to increase with energy. We compare this set of data with different models, including one inspired by our soft gluon resummation model for the impact parameter distribution of partons.
Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton dist ributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا