ترغب بنشر مسار تعليمي؟ اضغط هنا

The Redshift and Metallicity of the Host Galaxy of Dark GRB 080325 at z=1.78

139   0   0.0 ( 0 )
 نشر من قبل Tetsuya Hashimoto
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present near-infrared spectroscopy of the host galaxy of dark GRB 080325 using Subaru/MOIRCS. The obtained spectrum provides a clear detection of H$alpha$ emission and marginal [NII]$lambda$6584. The host is a massive (M$_{*}sim10^{11}$M$_{odot}$), dusty ($A_{V}sim 1.2$) star-forming galaxy at z=1.78. The star formation rate calculated from the H$alpha$ luminosity (35.6-47.0 M$_{odot}$ yr$^{-1}$) is typical among GRB host galaxies (and star-forming galaxies generally) at z $>$1; however, the specific star formation rate is lower than normal star-forming galaxies at redshift $sim$ 1.6, in contrast to the high specific star formation rates measured for many of other GRB hosts. The metallicity of the host is estimated to be 12+log(O/H)$_{rm KK04}$$=$8.88. We emphasize that this is one of the most massive distant host galaxies for which metallcity is measured with emission-line diagnostics. The metallicity is fairly high among GRB hosts. However, this is still lower than the metallicity of normal star-forming galaxies of the same mass at z$sim$1.6. The metallicity offset from normal star-forming galaxies is close to a typical value of other GRB hosts and indicates that GRB host galaxies are uniformly biased toward low metalicity over a wide range of redshift and stellar mass. The low-metallicity nature of the GRB 080325 host is likely not attributable to the fundamental metallicity relation of star-forming galaxies beacuse it is a metal-poor outlier from the relation and has a low sSFR. Thus we conclude that metallicity is important to the mechanism that produced this GRB.



قيم البحث

اقرأ أيضاً

439 - T. Hashimoto , K. Ohta , K. Aoki 2010
We present optical and near infrared observations of GRB 080325 classified as a Dark GRB. Near-infrared observations with Subaru/MOIRCS provided a clear detection of afterglow in Ks band, although no optical counterpart was reported. The flux ratio o f rest-wavelength optical to X-ray bands of the afterglow indicates that the dust extinction along the line of sight to the afterglow is Av = 2.7 - 10 mag. This large extinction is probably the major reason for optical faintness of GRB 080325. The J - Ks color of the host galaxy, (J - Ks = 1.3 in AB magnitude), is significantly redder than those for typical GRB hosts previously identified. In addition to J and Ks bands, optical images in B, Rc, i, and z bands with Subaru/Suprime-Cam were obtained at about one year after the burst, and a photometric redshift of the host is estimated to be z_{photo} = 1.9. The host luminosity is comparable to L^{*} at z sim 2 in contrast to the sub-L^{*} property of typical GRB hosts at lower redshifts. The best-fit stellar population synthesis model for the host shows that a large dust extinction (Av = 0.8 mag) attributes to the red nature of the host and that the host galaxy is massive (M_{*} = 7.0 times 10^{10} Msun) which is one of the most massive GRB hosts previously identified. By assuming that the mass-metallicity relation for star-forming galaxies at z sim 2 is applicable for the GRB host, this large stellar mass suggests the high metallicity environment around GRB 080325, consistent with inferred large extinction.
No optical afterglow was found for the dark burst GRB 981226 and hence no absorption redshift has been obtained. We here use ground-based and space imaging observations to analyse the spectral energy distribution (SED) of the host galaxy. By comparis on with synthetic template spectra we determine the photometric redshift of the GRB 981226 host to be z_phot = 1.11+/-0.06 (68% confidence level). While the age-metallicity degeneracy for the host SED complicates the determination of accurate ages, metallicity, and extinction, the photometric redshift is robust. The inferred z_phot value is also robust compared to a Bayesian redshift estimator which gives z_phot=0.94+/-0.13. The characteristics for this host are similar to other GRB hosts previously examined. Available low resolution spectra show no emission lines at the expected wavelengths. The photometric redshift estimate indicates an isotropic energy release consistent with the Amati relation for this GRB which had a spectrum characteristic of an X-ray flash.
We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Automatic observations were performed at BOOTES-4/MET robotic tele scope. We also triggered target of opportunity (ToO) observation at the OSN, IRAM PdBI and the GTC+OSIRIS. The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as the 10.4m GTC, the 4.2m WHT, 6m BTA, and the 2m LT. Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Thanks to mm observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727{AA} at a redshift of 1.250+/-0.001 implying a SFR(M_sun/yr) > 6.18 M_sun/yr without correcting for dust extinction. The probable extinction was revealed through analysis of the afterglow SED, resulting in a value of AV >= ~ 0.9 at the rest frame, this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (chi2/d.o.f.=0.564) by a luminous (MB=-21.16), low-extinction (AV =0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and line-of-sight extinction if the GRB birth place happened to lie in a local dense environment. In light of having relatively small specific SFR (SSFR) ~ 5.3 M_sun/yr (L/L_star)-1, this also could explain the age of the old stellar population of host galaxy.
We present Keck/NIRSPEC near-IR images and Magellan/IMACS optical spectroscopy of the host galaxy of GRB 031203. The host is an actively star-forming galaxy at z=0.1055 +/- 0.0001. This is the lowest redshift GRB to-date, aside from GRB 980425. From the hydrogen Balmer lines, we infer an extinction of A_V = 3.62 +/- 0.25 or a total reddening E_T(B-V) = 1.17 +/- 0.1 toward the sightline to the nebular regions. After correcting for reddening, we perform an emission-line analysis and derive an ISM temperature of T=13400+/-2000K and electron density of n_e = 300 cm^(-3). These imply a metallicity [O/H]=-0.72+/-0.15 dex and a roughly solar abundance pattern for N, Ne, S, and Ar. Integrating Ha, we infer a dust-corrected star formation rate (SFR) of > 11 Msol/yr. These observations have the following implications: (1) the galaxy has a low K-band luminosity L ~ L^*/5, typical of GRB host galaxies; (2) the low redshift indicates GRB 031203 had an isotropic-equivalent gamma-ray energy release smaller than all previous confirmed GRB events. The burst discovery raises the likelihood of identifying many additional low z, low flux events with Swift; (3) the large SFR, low metallicity, and the inferred hard radiation field is suggestive of massive star formation, supporting the collapsar model; (4) several lines of evidence argue against the identification of GRB 031203 as an X-ray flash event.
We present a new study of archival ALMA observations of the CO(2-1) line emission of the host galaxy of quasar RX J1131 at redshift $z$=0.654, lensed by a foreground galaxy. A simple lens model is shown to well reproduce the optical images obtained b y the Hubble Space Telescope. Clear evidence for rotation of the gas contained in the galaxy is obtained and a simple rotating disc model is shown to give an excellent overall description of the morpho-kinematics of the source. The possible presence of a companion galaxy suggested by some previous authors is not confirmed. Detailed comparison between model and observations gives evidence for a more complex dynamics than implied by the model. Doppler velocity dispersion within the beam size in the image plane is found to account for the observed line width.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا