ﻻ يوجد ملخص باللغة العربية
In this work, we used a $32^3 times 64 times 32$, 2+1 flavor domain wall lattice with Iwasaki+DSDR gauge action. The pion mass is 171 MeV and the kaon mass is 492 MeV. We implement the Glashow-Iliopoulos-Maiani (GIM) cancellation using charm quark masses of 750 MeV and 592 MeV. This is an intermediate calculation, in that we are using both a coarse lattice spacing (1/a = 1.37GeV) so we expect significant discretization error coming from charm quark mass and we are also using unphysical kinematics for the pion. The main purpose of this calculation is to study the contribution from the two-pion intermediate state when the energy of a two-pion state is lower than that of the kaon, as well as the corresponding finite volume correction to the $Delta M_K$.
We report on the first complete calculation of the $K_L-K_S$ mass difference, $Delta M_K$, using lattice QCD. The calculation is performed on a 2+1 flavor, domain wall fermion ensemble with a 330MeV pion mass and a 575 MeV kaon mass. We use a quenche
We develop and demonstrate techniques needed to compute the long distance contribution to the $K_{L}$-$K_{S}$ mass difference, $Delta M_K$, in lattice QCD and carry out a first, exploratory calculation of this fundamental quantity. The calculation is
The real and imaginary parts of the $K_L-K_S$ mixing matrix receive contributions from all three charge-2/3 quarks: up, charm and top. These give both short- and long-distance contributions which are accessible through a combination of perturbative a
The RBC and UKQCD collaborations have recently proposed a procedure for computing the K_L-K_S mass difference. A necessary ingredient of this procedure is the calculation of the (non-exponential) finite-volume corrections relating the results obtaine
We study the processes $e^+ e^-to K_S^0 K_L^0 gamma$, $K_S^0 K_L^0 pi^+pi^-gamma$, $K_S^0 K_S^0 pi^+pi^-gamma$, and $K_S^0 K_S^0 K^+K^-gamma$, where the photon is radiated from the initial state, providing cross section measurements for the hadronic