ﻻ يوجد ملخص باللغة العربية
The RBC and UKQCD collaborations have recently proposed a procedure for computing the K_L-K_S mass difference. A necessary ingredient of this procedure is the calculation of the (non-exponential) finite-volume corrections relating the results obtained on a finite lattice to the physical values. This requires a significant extension of the techniques which were used to obtain the Lellouch-Luscher factor, which contains the finite-volume corrections in the evaluation of non-leptonic kaon decay amplitudes. We review the status of our study of this issue and, although a complete proof is still being developed, suggest the form of these corrections for general volumes and a strategy for taking the infinite-volume limit. The general result reduces to the known corrections in the special case when the volume is tuned so that there is a two-pion state degenerate with the kaon.
We report on the first complete calculation of the $K_L-K_S$ mass difference, $Delta M_K$, using lattice QCD. The calculation is performed on a 2+1 flavor, domain wall fermion ensemble with a 330MeV pion mass and a 575 MeV kaon mass. We use a quenche
We develop and demonstrate techniques needed to compute the long distance contribution to the $K_{L}$-$K_{S}$ mass difference, $Delta M_K$, in lattice QCD and carry out a first, exploratory calculation of this fundamental quantity. The calculation is
In this work, we used a $32^3 times 64 times 32$, 2+1 flavor domain wall lattice with Iwasaki+DSDR gauge action. The pion mass is 171 MeV and the kaon mass is 492 MeV. We implement the Glashow-Iliopoulos-Maiani (GIM) cancellation using charm quark ma
The real and imaginary parts of the $K_L-K_S$ mixing matrix receive contributions from all three charge-2/3 quarks: up, charm and top. These give both short- and long-distance contributions which are accessible through a combination of perturbative a
We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self energies are computed in a finite volume at next-to-next-to-next-to leading order (N$^3$LO), where the