ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Side Groups on Kinetics of Charge Carrier Recombination in Dye Molecule-Doped Multilayer Organic Light-Emitting Diodes

110   0   0.0 ( 0 )
 نشر من قبل Shengwei Shi Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The kinetics of the charge carrier recombination in dye molecule-doped multilayer organic light-emitting diodes (OLEDs) was quantified by transient electroluminescence (EL). Three sets of dye molecules, such as derivatives of naphthalimide and stilbene, were used as dopants in light-emission layer. Although the devices show almost the same EL spectra for each set of molecules, they show very different EL efficiency. The difference in EL efficiency was attributed to the difference in charge carrier recombination, as revealed by transient EL. The recombination coefficient ({gamma}) was determined from the long-time component of the temporal decay of the EL intensity after a rectangular voltage pulse was turned off. It was found that {gamma} and EL efficiency were both strongly dependent on the molecular structures of the dopants, and the donor groups and {pi}-conjugated structure guaranteed high {gamma} and EL efficiency in OLEDs.



قيم البحث

اقرأ أيضاً

Cathodoluminescence spectra were measured to determine the characteristics of luminescence bands and carrier dynamics in beta-Ga2O3 bulk single crystals. The CL emission was found to be dominated by a broad UV emission peaked at 3.40 eV, which exhibi ts strong quenching with increasing temperature; however, its spectral shape and energy position remain virtually unchanged. We observed a super-linear increase of CL intensity with excitation density; this kinetics of carrier recombination can be explained in terms of carrier trapping and charge transfer at Fe impurity centres. The temperature-dependent properties of this UV band are consistent with weakly bound electrons in self-trapped excitons with an activation energy of 48 +/- 10 meV. In addition to the self-trapped exciton emission, a blue luminescence (BL) band is shown to be related to a donor-like defect, which increases significantly in concentration after hydrogen plasma annealing. The point defect responsible for the BL, likely an oxygen vacancy, is strongly coupled to the lattice exhibiting a Huang-Rhys factor of ~ 7.3.
A growing interest in colloidal quantum dot (QD) based light-emitting diodes (QD-LEDs) has been motivated by the exceptional color purity and spectral tunability of QD emission as well as the amenability of QD materials to highly scalable and inexpen sive solution processing. One current challenge in the QD-LED field has been a still incomplete understanding of the role of extrinsic factors (e.g., recombination via QD surface defects) versus intrinsic processes such as multicarrier Auger recombination or electron-hole separation due to applied electric field in defining device efficiency. Here, we address this problem with a study of excited-state dynamics in a series of structurally engineered QDs, which is performed in parallel with characterization of their performance upon incorporation into LEDs. The results of this study indicate that under both zero and forward bias, a significant fraction of the QDs within the active emitting layer is negatively charged and therefore, Auger recombination represents an important factor limiting the efficiency of these devices. We further observe that the onset of the LED efficiency roll-off is also controlled by Auger recombination and can be shifted to higher currents by using newly developed QDs with an intermediate alloy layer at the core-shell interface introduced for suppression of Auger decay. Our findings suggest that further improvement in the performance of QD-LEDs can be achieved by developing effective approaches for controlling Auger recombination and/or minimizing the effects of QD charging via improved balancing of electron and hole injection currents.
The magnetoelectroluminescence of conjugated organic polymer films is widely accepted to arise from a polaron pair mechanism, but their magnetoconductance is less well understood. Here we derive a new relationship between the experimentally measurabl e magnetoelectroluminescence and magnetoconductance and the theoretically calculable singlet yield of the polaron pair recombination reaction. This relationship is expected to be valid regardless of the mechanism of the magnetoconductance, provided the mobilities of the free polarons are independent of the applied magnetic field (i.e., provided one discounts the possibility of spin-dependent transport). We also discuss the semiclassical calculation of the singlet yield of the polaron pair recombination reaction for materials such as poly(2,5-dioctyloxy-paraphenylene vinylene) (DOO-PPV), the hyperfine fields in the polarons of which can be extracted from light-induced electron spin resonance measurements. The resulting theory is shown to give good agreement with experimental data for both normal (H-) and deuterated (D-) DOO-PPV over a wide range of magnetic field strengths once singlet-triplet dephasing is taken into account. Without this effect, which has not been included in any previous simulation of magnetoelectroluminescence, it is not possible to reproduce the experimental data for both isotopologues in a consistent fashion. Our results also indicate that the magnetoconductance of DOO-PPV cannot be solely due to the effect of the magnetic field on the dissociation of polaron pairs.
179 - Sebastien Forget 2010
Concentration quenching is a major impediment to efficient organic light-emitting devices. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red-emitting starbust triarylamine molecule (4-di(4-tert-butylbiphen yl-4-yl)amino-4-dicyanovinylbenzene, named FVIN), exhibiting a very small sensitivity to concentration quenching. OLEDs are fabricated with various doping levels of FVIN into Alq3, and show a remarkably stable external quantum efficiency of 1.5% for doping rates ranging from 5% up to 40%, which strongly relaxes the technological constraints on the doping accuracy. An efficiency of 1% is obtained for a pure undoped active region, along with deep red emission (x=0.6; y=0.35 CIE coordinates). A comparison of FVIN with the archetypal DCM dye is presented in an identical multilayer OLED structure.
The performance of solution-processed organic light emitting diodes (OLEDs) is often limited by non-uniform contacts. In this work, we introduce Ni-containing solution-processed metal oxide (MO) interfacial layers inserted between indium tin oxide (I TO) and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) to improve the bottom electrode contact for OLEDs using the poly(p-phenylene vinylene) (PPV) derivative Super-Yellow (SY) as an emission layer. For ITO/Ni-containing MO/PEDOT:PSS bottom electrode structures we show enhanced wetting properties that result in an improved OLED device efficiency. Best performance is achieved using a Cu-Li co-doped spinel nickel cobaltite [(Cu-Li):NiCo2O4], for which the current efficiency and luminous efficacy of SY OLEDs increased, respectively, by 12% and 11% from the values obtained for standard devices without a Ni-containing MO interface modification between ITO and PEDOT:PSS. The enhanced performance was attributed to the improved morphology of PEDOT:PSS, which consequently increased the hole injection capability of the optimized ITO/(Cu-Li):NiCo2O4/PEDOT:PSS electrode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا