ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Information Theoretic Limits of Learning Ising Models

245   0   0.0 ( 0 )
 نشر من قبل Karthikeyan Shanmugam
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a general framework for computing lower-bounds on the sample complexity of recovering the underlying graphs of Ising models, given i.i.d samples. While there have been recent results for specific graph classes, these involve fairly extensive technical arguments that are specialized to each specific graph class. In contrast, we isolate two key graph-structural ingredients that can then be used to specify sample complexity lower-bounds. Presence of these structural properties makes the graph class hard to learn. We derive corollaries of our main result that not only recover existing recent results, but also provide lower bounds for novel graph classes not considered previously. We also extend our framework to the random graph setting and derive corollaries for ErdH{o}s-R{e}nyi graphs in a certain dense setting.

قيم البحث

اقرأ أيضاً

What is the optimal number of independent observations from which a sparse Gaussian Graphical Model can be correctly recovered? Information-theoretic arguments provide a lower bound on the minimum number of samples necessary to perfectly identify the support of any multivariate normal distribution as a function of model parameters. For a model defined on a sparse graph with $p$ nodes, a maximum degree $d$ and minimum normalized edge strength $kappa$, this necessary number of samples scales at least as $d log p/kappa^2$. The sample complexity requirements of existing methods for perfect graph reconstruction exhibit dependency on additional parameters that do not enter in the lower bound. The question of whether the lower bound is tight and achievable by a polynomial time algorithm remains open. In this paper, we constructively answer this question and propose an algorithm, termed DICE, whose sample complexity matches the information-theoretic lower bound up to a universal constant factor. We also propose a related algorithm SLICE that has a slightly higher sample complexity, but can be implemented as a mixed integer quadratic program which makes it attractive in practice. Importantly, SLICE retains a critical advantage of DICE in that its sample complexity only depends on quantities present in the information theoretic lower bound. We anticipate that this result will stimulate future search of computationally efficient sample-optimal algorithms.
The overall predictive uncertainty of a trained predictor can be decomposed into separate contributions due to epistemic and aleatoric uncertainty. Under a Bayesian formulation, assuming a well-specified model, the two contributions can be exactly ex pressed (for the log-loss) or bounded (for more general losses) in terms of information-theoretic quantities (Xu and Raginsky, 2020). This paper addresses the study of epistemic uncertainty within an information-theoretic framework in the broader setting of Bayesian meta-learning. A general hierarchical Bayesian model is assumed in which hyperparameters determine the per-task priors of the model parameters. Exact characterizations (for the log-loss) and bounds (for more general losses) are derived for the epistemic uncertainty - quantified by the minimum excess meta-risk (MEMR)- of optimal meta-learning rules. This characterization is leveraged to bring insights into the dependence of the epistemic uncertainty on the number of tasks and on the amount of per-task training data. Experiments are presented that compare the proposed information-theoretic bounds, evaluated via neural mutual information estimators, with the performance of a novel approximate fully Bayesian meta-learning strategy termed Langevin-Stein Bayesian Meta-Learning (LS-BML).
In this paper, we study the information theoretic bounds for exact recovery in sub-hypergraph models for community detection. We define a general model called the $m-$uniform sub-hypergraph stochastic block model ($m-$ShSBM). Under the $m-$ShSBM, we use Fanos inequality to identify the region of model parameters where any algorithm fails to exactly recover the planted communities with a large probability. We also identify the region where a Maximum Likelihood Estimation (MLE) algorithm succeeds to exactly recover the communities with high probability. Our bounds are tight and pertain to the community detection problems in various models such as the planted hypergraph stochastic block model, the planted densest sub-hypergraph model, and the planted multipartite hypergraph model.
Learning disentangled representations of natural language is essential for many NLP tasks, e.g., conditional text generation, style transfer, personalized dialogue systems, etc. Similar problems have been studied extensively for other forms of data, such as images and videos. However, the discrete nature of natural language makes the disentangling of textual representations more challenging (e.g., the manipulation over the data space cannot be easily achieved). Inspired by information theory, we propose a novel method that effectively manifests disentangled representations of text, without any supervision on semantics. A new mutual information upper bound is derived and leveraged to measure dependence between style and content. By minimizing this upper bound, the proposed method induces style and content embeddings into two independent low-dimensional spaces. Experiments on both conditional text generation and text-style transfer demonstrate the high quality of our disentangled representation in terms of content and style preservation.
Progress in deep reinforcement learning (RL) research is largely enabled by benchmark task environments. However, analyzing the nature of those environments is often overlooked. In particular, we still do not have agreeable ways to measure the diffic ulty or solvability of a task, given that each has fundamentally different actions, observations, dynamics, rewards, and can be tackled with diverse RL algorithms. In this work, we propose policy information capacity (PIC) -- the mutual information between policy parameters and episodic return -- and policy-optimal information capacity (POIC) -- between policy parameters and episodic optimality -- as two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty. Evaluating our metrics across toy environments as well as continuous control benchmark tasks from OpenAI Gym and DeepMind Control Suite, we empirically demonstrate that these information-theoretic metrics have higher correlations with normalized task solvability scores than a variety of alternatives. Lastly, we show that these metrics can also be used for fast and compute-efficient optimizations of key design parameters such as reward shaping, policy architectures, and MDP properties for better solvability by RL algorithms without ever running full RL experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا