ﻻ يوجد ملخص باللغة العربية
Recently, x-ray illumination, using synchrotron radiation, has been used to manipulate defects, stimulate self-organization and to probe their structure. Here we explore a method of defect-engineering low-dimensional systems using focused laboratory-scale X-ray sources. We demonstrate an irreversible change in the conducting properties of the 2-dimensional electron gas at the interface between the complex oxide materials LaAlO3 and SrTiO3 by X-ray irradiation. The electrical resistance is monitored during exposure as the irradiated regions are driven into a high resistance state. Our results suggest attention shall be paid on electronic structure modification in X-ray spectroscopic studies and highlight large-area defect manipulation and direct device patterning as possible new fields of application for focused laboratory X-ray sources.
Here we study the electronic properties of cuprate/manganite interfaces. By means of atomic resolution electron microscopy and spectroscopy, we produce a subnanometer scale map of the transition metal oxidation state profile across the interface betw
We describe the ground- and excited-state electronic structure of bulk MnO and NiO, two prototypical correlated electron materials, using coupled cluster theory with single and double excitations (CCSD). As a corollary, this work also reports the fir
By using a realist microscopic model, we study the electric and magnetic properties of the interface between a half metallic manganite and an insulator. We find that the lack of carriers at the interface debilitates the double exchange mechanism, wea
The metallic interface between two oxide insulators, such as LaAlO3/SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such
Two-dimensional electron gas (2DEG) confined in quantum wells at insulating oxide interfaces have attracted much attention as their electronic properties display a rich physics with various electronics orders such as superconductivity and magnetism.