ترغب بنشر مسار تعليمي؟ اضغط هنا

The CoRoT discovery of a unique triple-mode cepheid in the galaxy

115   0   0.0 ( 0 )
 نشر من قبل Ennio Poretti
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exploitation of the CoRoT treasure of stars observed in the exoplanetary field allowed the detection of a unusual triple-mode Cepheid in the Milky Way, CoRoT 0223989566. The two modes with the largest amplitudes and period ratio of 0.80 are identified with the first (P1=1.29 d) and second (P2=1.03 d) radial overtones. The third period, which has the smallest amplitude but able to produce combination terms with the other two, is the longest one (P3=1.89 d). The ratio of 0.68 between the first-overtone period and the third period is the unusual feature. Its identification with the fundamental radial or a nonradial mode is discussed with respect to similar cases in the Magellanic Clouds. In both cases the period triplet and the respective ratios make the star unique in our Galaxy. The distance derived from the period-luminosity relation and the galactic coordinates put CoRoT~0223989566 in the metal-rich environment of the outer arm of the Milky Way.

قيم البحث

اقرأ أيضاً

A previously-derived photometric parallax of 10.10+-0.20 mas, d=99+-2 pc, is confirmed for Polaris by a spectroscopic parallax derived using line ratios in high dispersion spectra for the Cepheid. The resulting estimates for the mean luminosity of <M v>=-3.07+-0.01 s.e., average effective temperature of <Teff>=6025+-1 K s.e., and intrinsic color of (<B>-<V>)o=0.56+-0.01 s.e., which match values obtained previously from the photometric parallax for a space reddening of E(B-V)=0.02+-0.01, are consistent with fundamental mode pulsation for Polaris and a first crossing of the instability strip, as also argued by its rapid rate of period increase. The systematically smaller Hipparcos parallax for Polaris appears discrepant by comparison.
The determination of pulsation mode and distance for field Cepheids is a complicated problem best resolved by a luminosity estimate. For illustration a technique based on spectroscopic luminosity discrimination is applied to the 4.47d s-Cepheid FF Aq l. Line ratios in high dispersion spectra of the variable yield values of <Mv>=-3.40+-0.02 s.e.(+-0.04 s.d.), average effective temperature Teff=6195+-24 K, and intrinsic color (<B>-<V>)o = +0.506+-0.007, corresponding to a reddening of E(B-V)=0.25+-0.01, or E(B-V)(B0)=0.26+-0.01. The skewed light curve, intrinsic color, and luminosity of FF Aql are consistent with fundamental mode pulsation for a small amplitude classical Cepheid on the blue side of the instability strip, not a sinusoidal pulsator. A distance of 413+-14 pc is estimated from the Cepheids angular diameter in conjunction with a mean radius of <R>=39.0+-0.7 Rsun inferred from its luminosity and effective temperature. The dust extinction towards FF Aql is described by a ratio of total-to-selective extinction of Rv=Av/E(B-V)=3.16+-0.34 according to the stars apparent distance modulus.
We report the discovery of J1953-1019, the first resolved triple white dwarf system. The triplet consists of an inner white dwarf binary and a wider companion. Using Gaia DR2 photometry and astrometry combined with our follow-up spectroscopy, we deri ve effective temperatures, surface gravities, masses and cooling ages of the three components. All three white dwarfs have pure-hydrogen (DA) atmospheres, masses of 0.60-0.63 Msun and cooling ages of 40-290 Myr. We adopt eight initial-to-final mass relations to estimate the main sequence progenitor masses (which we find to be similar for the three components, 1.6-2.6 Msun) and lifetimes. The differences between the derived cooling times and main sequence lifetimes agree for most of the adopted initial-to-final mass relations, hence the three white dwarfs in J1953-1019 are consistent with coeval evolution. Furthermore, we calculate the projected orbital separations of the inner white dwarf binary (303.25 +- 0.01 au) and of the centre of mass of the inner binary and the outer companion (6398.97 +- 0.09 au). From these values, and taking into account a wide range of possible configurations for the triplet to be currently dynamically stable, we analyse the future evolution of the system. We find that a collision between the two inner white dwarfs due to Lidov-Kozai oscillations is unlikely, though if it occurs it could result in a sub-Chandrasekhar Type Ia supernova explosion.
The oscillations of the solar-like star HD 49933 have been observed thoroughly by CoRot. Two dozens of frequency shifts, which are closely related with the change in magnetic activity, have been measured. To explore the effects of the magnetic activi ty on the frequency shifts, we calculate frequency shifts for the radial and $l = 1$ p-modes of HD 49933 with the general variational method, which evaluates the shifts using a spatial integral of the product of a kernel and some sources. The theoretical frequency shifts well reproduce the observation. The magnitudes and positions of the sources are determined according to the $chi^2$ criterion. We predict the source that contributes to both $l = 0$ and $l = 1$ modes is located at $0.48 - 0.62$Mm below the stellar surface. In addition, based on the assumption that $A_{0}$ is proportional to the change in the MgII activity index $Delta{i}_{MgII}$, we obtained that the change of MgII index between minimum and maximum of HD 49933 cycle period is about 0.665. The magnitude of the frequency shifts compared to the Sun already told us that HD 49933 is much more active than the Sun, which is further confirmed in this paper. Furthermore, our calculation on the frequency shifts of $l = 1$ modes indicates the variation of turbulent velocity in the stellar convective zone may be an important source for the $l = 1$ shifts.
59 - G. Kovacs , G. A. Bakos , 2014
Fourier analysis of the light curve of AC And from the HATNet database reveals the rich frequency structure of this object. Above 30 components are found down to the amplitude of 3 mmag. Several of these frequencies are not the linear combinations of the three basic components. We detect period increase in all three components that may lend support to the Pop I classification of this variable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا