ترغب بنشر مسار تعليمي؟ اضغط هنا

The rich frequency spectrum of the triple-mode variable AC And

59   0   0.0 ( 0 )
 نشر من قبل Geza Kovacs
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fourier analysis of the light curve of AC And from the HATNet database reveals the rich frequency structure of this object. Above 30 components are found down to the amplitude of 3 mmag. Several of these frequencies are not the linear combinations of the three basic components. We detect period increase in all three components that may lend support to the Pop I classification of this variable.

قيم البحث

اقرأ أيضاً

We present time-resolved spectroscopy and photometry of the dwarf nova SBSS 1108+574, obtained during the 2012 outburst. Its quiescent spectrum is unusually rich in helium, showing broad, double-peaked emission lines from the accretion disc. We measu re a line flux ratio HeI 5875/Halpha = 0.81 +/- 0.04, a much higher ratio than typically observed in cataclysmic variables (CVs). The outburst spectrum shows hydrogen and helium in absorption, with weak emission of Halpha and HeI 6678, as well as strong HeII emission. From our photometry, we find the superhump period to be 56.34 +/- 0.18 minutes, in agreement with the previously published result. The spectroscopic period, derived from the radial velocities of the emission lines, is found to be 55.3 +/- 0.8 minutes, consistent with a previously identified photometric orbital period, and significantly below the normal CV period minimum. This indicates that the donor in SBSS 1108+574 is highly evolved. The superhump excess derived from our photometry implies a mass ratio of q = 0.086 +/- 0.014. Our spectroscopy reveals a grazing eclipse of the large outbursting disc. As the disc is significantly larger during outburst, it is unlikely that an eclipse will be detectable in quiescence. The relatively high accretion rate implied by the detection of outbursts, together with the large mass ratio, suggests that SBSS 1108+574 is still evolving towards its period minimum.
The exploitation of the CoRoT treasure of stars observed in the exoplanetary field allowed the detection of a unusual triple-mode Cepheid in the Milky Way, CoRoT 0223989566. The two modes with the largest amplitudes and period ratio of 0.80 are ident ified with the first (P1=1.29 d) and second (P2=1.03 d) radial overtones. The third period, which has the smallest amplitude but able to produce combination terms with the other two, is the longest one (P3=1.89 d). The ratio of 0.68 between the first-overtone period and the third period is the unusual feature. Its identification with the fundamental radial or a nonradial mode is discussed with respect to similar cases in the Magellanic Clouds. In both cases the period triplet and the respective ratios make the star unique in our Galaxy. The distance derived from the period-luminosity relation and the galactic coordinates put CoRoT~0223989566 in the metal-rich environment of the outer arm of the Milky Way.
We present new Hubble Space Telescope (HST) ultraviolet and ground-based optical observations of the hot, metal-rich white dwarf GD 394. Extreme-ultraviolet (EUV) observations in 1992-1996 revealed a 1.15d periodicity with a 25 percent amplitude, hyp othesised to be due to metals in a surface accretion spot. We obtained phase-resolved HST/Space Telescope Imaging Spectrograph (STIS) high-resolution far-ultraviolet (FUV) spectra of GD 394 that sample the entire period, along with a large body of supplementary data. We find no evidence for an accretion spot, with the flux, accretion rate and radial velocity of GD 394 constant over the observed timescales at ultraviolet and optical wavelengths. We speculate that the spot may have no longer been present when our observations were obtained, or that the EUV variability is being caused by an otherwise undetected evaporating planet. The atmospheric parameters obtained from separate fits to optical and ultraviolet spectra are inconsistent, as is found for multiple hot white dwarfs. We also detect non-photospheric, high-excitation absorption lines of multiple volatile elements, which could be evidence for a hot plasma cocoon surrounding the white dwarf.
74 - J. Ballot , L. Gizon , R. Samadi 2011
The star HD 52265 is a G0V metal-rich exoplanet-host star observed in the seismology field of the CoRoT space telescope from November 2008 to March 2009. The satellite collected 117 days of high-precision photometric data on this star, showing that i t presents solar-like oscillations. HD 52265 was also observed in spectroscopy with the Narval spectrograph at the same epoch. We characterise HD 52265 using both spectroscopic and seismic data. The fundamental stellar parameters of HD 52265 were derived with the semi-automatic software VWA, and the projected rotational velocity was estimated by fitting synthetic profiles to isolated lines in the observed spectrum. The parameters of the observed p modes were determined with a maximum-likelihood estimation. We performed a global fit of the oscillation spectrum, over about ten radial orders, for degrees l=0 to 2. We also derived the properties of the granulation, and analysed a signature of the rotation induced by the photospheric magnetic activity. Precise determinations of fundamental parameters have been obtained: Teff = 6100 +- 60 K, log g = 4.35 +- 0.09, [M/H] = 0.19 +- 0.05, as well as vsini = 3.6 +0.3 -1.0 km/s. We have measured a mean rotation period P_rot = 12.3 +- 0.15 days, and find a signature of differential rotation. The frequencies of 31 modes are reported in the range 1500-2550 micro-Hz. The large separation exhibits a clear modulation around the mean value <Dnu> = 98.3 +- 0.1 micro-Hz. Mode widths vary with frequency along an S-shape with a clear local maximum around 1800 micro-Hz. We deduce lifetimes ranging between 0.5 and 3 days for these modes. Finally, we find a maximal bolometric amplitude of about 3.96 +- 0.24 ppm for radial modes.
In this paper, we analyze the light variations of KIC 10975348 using photometric data delivered from $Kepler$ mission. This star is exceptionally faint ($K_{p}$ = 18.6 mag), compared to most well-studied $delta$ Scuti stars. The Fourier analysis of t he short cadence data (i.e. Q14, Q15 and Q16, spanning 220 days) reveals the variations are dominated by the strongest mode with frequency F0 = 10.231899 $rm{d^{-1}}$, which is compatible with that obtained from $RATS-Kepler$. The other two independent modes with F1 (= 13.4988 $rm{d^{-1}}$) and F2 (= 19.0002 $rm{d^{-1}}$) are newly detected and have amplitudes two orders of magnitude smaller than F0. We note that, for the first time, this star is identified to be a high-amplitude $delta$ Sct (HADS) star with amplitude of about 0.7 mag, and the lower ratio of F0/F1 = 0.758 suggests it might be a metal-rich variable star. The frequency F2 may be a third overtone mode, suggesting this target might be a new radial triple-mode HADS star. We perform $O - C$ analysis using 1018 newly determined times of maximum light and derive an ephemeris formula: $T_{max}$ = 2456170.241912(0)+0.097734(1) $times$ $E$. The $O - C$ diagram shows that the pulsation period of KIC 10975348 seems to show no obvious change, which is in contrast to that of the majority of HADS stars. The possible cause of that may be due to the current short time span of observations. To verify its possible period variations, regular observation from space with a longer time span in future is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا