ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Fluctuating Hydrodynamics in One Dimension: the Case of Two Conserved Fields

116   0   0.0 ( 0 )
 نشر من قبل Gabriel Stoltz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Herbert Spohn




اسأل ChatGPT حول البحث

We study the BS model, which is a one-dimensional lattice field theory taking real values. Its dynamics is governed by coupled differential equations plus random nearest neighbor exchanges. The BS model has exactly two locally conserved fields. Through numerical simulations the peak structure of the steady state space-time correlations is determined and compared with nonlinear fluctuating hydrodynamics, which predicts a traveling peak with KPZ scaling function and a standing peak with a scaling function given by the completely asymmetric Levy distribution with parameter $alpha = 5/3$. As a by-product, we completely classify the universality classes for two coupled stochastic Burgers equations with arbitrary coupling coefficients.

قيم البحث

اقرأ أيضاً

We extend recent results on the exact hydrodynamics of a system of diffusive active particles displaying a motility-induced phase separation to account for typical fluctuations of the dynamical fields. By calculating correlation functions exactly in the homogeneous phase, we find that two macroscopic length scales develop in the system. The first is related to the diffusive length of the particles and the other to the collective behavior of the particles. The latter diverges as the critical point is approached. Our results show that the critical behavior of the model in one dimension belongs to the universality class of a mean-field Ising model, both for static and dynamic properties, when the thermodynamic limit is taken in a specified manner. The results are compared to the critical behavior exhibited by the ABC model. In particular, we find that in contrast to the ABC model the density large deviation function, at its Gaussian approximation, does not contain algebraically decaying interactions but is of a finite, macroscopic, extent which is dictated by the diverging correlation length.
For diffusive many-particle systems such as the SSEP (symmetric simple exclusion process) or independent particles coupled with reservoirs at the boundaries, we analyze the density fluctuations conditioned on current integrated over a large time. We determine the conditioned large deviation function of density by a microscopic calculation. We then show that it can be expressed in terms of the solutions of Hamilton-Jacobi equations, which can be written for general diffusive systems using a fluctuating hydrodynamics description.
We introduce an assisted exchange model (AEM) on a one dimensional periodic lattice with (K+1) different species of hard core particles, where the exchange rate depends on the pair of particles which undergo exchange and their immediate left neighbor . We show that this stochastic process has a pair factorized steady state for a broad class of exchange dynamics. We calculate exactly the particle current and spatial correlations (K+1)-species AEM using a transfer matrix formalism. Interestingly the current in AEM exhibits density dependent current reversal and negative differential mobility- both of which have been discussed elaborately by using a two species exchange model which resembles the partially asymmetric conserved lattice gas model in one dimension. Moreover, multi-species version of AEM exhibits additional features like multiple points of current reversal, and unusual response of particle current.
Ferromagnetism in one dimension is a novel observation which has been reported in a recent work (P. Gambardella et.al., Nature {bf 416}, 301 (2002)), anisotropies are responsibles in that relevant effect. In the present work, another approach is used to obtain transition between two different magnetic ordering phases. Critical temperature has been estimated by Binder method. Ferromagnetic long range interactions have been included in a special Hamiltonian through a power law that decays at large inter-particle distance $r$ as $r^{-alpha}$, where $alphageq0$. For the present model, we have found that the trend of the critical temperature vanishes when the range of interactions decreases ($alphatoinfty$) and close to mean field approximation when the range of interactions increases ($alphato0$). The crossover between two these limit situations is discussed
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of s teady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the `sampling interval used in the measurement for both `steady-state and `finite initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A `deterministic approximation is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا