ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Characteristics of the ALMA 3 km Baseline Data

201   0   0.0 ( 0 )
 نشر من قبل Satoki Matsushita
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Satoki Matsushita




اسأل ChatGPT حول البحث

We present the phase characteristics study of the Atacama Large Millimeter/submillimeter Array (ALMA) long (up to 3 km) baseline, which is the longest baseline tested so far using ALMA. The data consist of long time-scale (10 - 20 minutes) measurements on a strong point source (i.e., bright quasar) at various frequency bands (bands 3, 6, and 7, which correspond to the frequencies of about 88 GHz, 232 GHz, and 336 GHz). Water vapor radiometer (WVR) phase correction works well even at long baselines, and the efficiency is better at higher PWV (>1 mm) condition, consistent with the past studies. We calculate the spatial structure function of phase fluctuation, and display that the phase fluctuation (i.e., rms phase) increases as a function of baseline length, and some data sets show turn-over around several hundred meters to 1 km and being almost constant at longer baselines. This is the first millimeter/submillimeter structure function at this long baseline length, and to show the turn-over of the structure function. Furthermore, the observation of the turn-over indicates that even if the ALMA baseline length extends to the planned longest baseline of 15 km, fringes will be detected at a similar rms phase fluctuation as that at a few km baseline lengths. We also calculate the coherence time using the 3 km baseline data, and the results indicate that the coherence time for band 3 is longer than 400 seconds in most of the data (both in the raw and WVR-corrected data). For bands 6 and 7, WVR-corrected data have about twice longer coherence time, but it is better to use fast switching method to avoid the coherence loss.

قيم البحث

اقرأ أيضاً

This paper presents the first detailed investigation of the characteristics of mm/submm phase fluctuation and phase correction methods obtained using ALMA with baseline lengths up to ~15 km. Most of the spatial structure functions (SSFs) show that th e phase fluctuation increases as a function of baseline length, with a power-law slope of ~0.6. In many cases, we find that the slope becomes shallower (average of ~0.2-0.3) at baseline lengths longer than ~1 km, namely showing a turn-over in SSF. The phase correction method using water vapor radiometers (WVRs) works well, especially for the cases where PWV >1 mm, which reduces the degree of phase fluctuations by a factor of two in many cases. However, phase fluctuations still remain after the WVR phase correction, suggesting the existence of other turbulent constituent that cause the phase fluctuation. This is supported by occasional SSFs that do not exhibit any turn-over; these are only seen when the PWV is low or after WVR phase correction. This means that the phase fluctuation caused by this turbulent constituent is inherently smaller than that caused by water vapor. Since there is no turn-over in the SSF up to the maximum baseline length of ~15 km, this turbulent constituent must have scale height of 10 km or more, and thus cannot be water vapor, whose scale height is around 1 km. This large scale height turbulent constituent is likely to be water ice or a dry component. Excess path length fluctuation after the WVR phase correction at a baseline length of 10 km is large (>200 micron), which is significant for high frequency (>450 GHz or <700 micron) observations. These results suggest the need for an additional phase correction method, such as fast switching, in addition to the WVR phase correction. We simulated the fast switching, and the result suggests that it works well, with shorter cycle times linearly improving the coherence.
The Atacama Large millimetre/submillimetre Array (ALMA) makes use of water vapour radiometers (WVR), which monitor the atmospheric water vapour line at 183 GHz along the line of sight above each antenna to correct for phase delays introduced by the w et component of the troposphere. The application of WVR derived phase corrections improve the image quality and facilitate successful observations in weather conditions that were classically marginal or poor. We present work to indicate that a scaling factor applied to the WVR solutions can act to further improve the phase stability and image quality of ALMA data. We find reduced phase noise statistics for 62 out of 75 datasets from the long-baseline science verification campaign after a WVR scaling factor is applied. The improvement of phase noise translates to an expected coherence improvement in 39 datasets. When imaging the bandpass source, we find 33 of the 39 datasets show an improvement in the signal-to-noise ratio (S/N) between a few to ~30 percent. There are 23 datasets where the S/N of the science image is improved: 6 by <1%, 11 between 1 and 5%, and 6 above 5%. The higher frequencies studied (band 6 and band 7) are those most improved, specifically datasets with low precipitable water vapour (PWV), <1mm, where the dominance of the wet component is reduced. Although these improvements are not profound, phase stability improvements via the WVR scaling factor come into play for the higher frequency (>450 GHz) and long-baseline (>5km) observations. These inherently have poorer phase stability and are taken in low PWV (<1mm) conditions for which we find the scaling to be most effective. A promising explanation for the scaling factor is the mixing of dry and wet air components, although other origins are discussed. We have produced a python code to allow ALMA users to undertake WVR scaling tests and make improvements to their data.
In the last years we have operated two very similar ultrafast photon counting photometers (Iqueye and Aqueye+) on different telescopes. The absolute time accuracy in time tagging the detected photon with these instruments is of the order of 500 ps fo r hours of observation, allowing us to obtain, for example, the most accurate ever light curve in visible light of the optical pulsars. Recently we adapted the two photometers for working together on two telescopes at Asiago (Italy), for realizing an Hanbury-Brown and Twiss Intensity Interferometry like experiment with two 3.9 km distant telescopes. In this paper we report about the status of the activity and on the very preliminary results of our first attempt to measure the photon intensity correlation.
A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capab ility, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
76 - N. S. Kardashev 2013
RadioAstron is a Russian space based radio telescope with a ten meter dish in a highly elliptical orbit with an eight to nine day period. RadioAstron works together with Earth based radio telescopes to give interferometer baselines extending up to 35 0,000 km, more than an order of magnitude improvement over what is possible from earth based very long baseline interferometry. Operating in four frequency bands, 1.3, 6, 18, and 92 cm, the corresponding resolutions are 7, 35, 100, and 500 microarcseconds respectively in the four wavelength bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا