ترغب بنشر مسار تعليمي؟ اضغط هنا

An Overview of the 2014 ALMA Long Baseline Campaign

443   0   0.0 ( 0 )
 نشر من قبل Catherine Vlahakis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.



قيم البحث

اقرأ أيضاً

In 2017, an Atacama Large Millimeter/submillimeter Array (ALMA) high-frequency long baseline campaign was organized to test image capabilities with baselines up to 16 km at submillimeter (submm) wavelengths. We investigated image qualities using ALMA receiver Bands 7, 8, 9, and 10 (285-875 GHz) by adopting band-to-band (B2B) phase referencing in which a phase calibrator is tracked at a lower frequency. For B2B phase referencing, it is expected that a closer phase calibrator to a target can be used, comparing to standard in-band phase referencing. In the first step, it is ensured that an instrumental phase offset difference between low- and high-frequency Bands can be removed using a differential gain calibration in which a phase calibrator is certainly detected while frequency switching. In the next step, comparative experiments are arranged to investigate the image quality between B2B and in-band phase referencing with phase calibrators at various separation angles. In the final step, we conducted long baseline imaging tests for a quasar at 289 GHz in Band 7 and 405 GHz in Band 8 and complex structure sources of HL Tau and VY CMa at ~670 GHz in Band 9. The B2B phase referencing was successfully applied, allowing us to achieve an angular resolution of 14x11 and 10x8 mas for HL Tau and VY CMa, respectively. There is a high probability of finding a low-frequency calibrator within 5.4 deg in B2B phase referencing, bright enough to use an 8 s scan length combined with a 7.5 GHz bandwidth.
This paper presents the first detailed investigation of the characteristics of mm/submm phase fluctuation and phase correction methods obtained using ALMA with baseline lengths up to ~15 km. Most of the spatial structure functions (SSFs) show that th e phase fluctuation increases as a function of baseline length, with a power-law slope of ~0.6. In many cases, we find that the slope becomes shallower (average of ~0.2-0.3) at baseline lengths longer than ~1 km, namely showing a turn-over in SSF. The phase correction method using water vapor radiometers (WVRs) works well, especially for the cases where PWV >1 mm, which reduces the degree of phase fluctuations by a factor of two in many cases. However, phase fluctuations still remain after the WVR phase correction, suggesting the existence of other turbulent constituent that cause the phase fluctuation. This is supported by occasional SSFs that do not exhibit any turn-over; these are only seen when the PWV is low or after WVR phase correction. This means that the phase fluctuation caused by this turbulent constituent is inherently smaller than that caused by water vapor. Since there is no turn-over in the SSF up to the maximum baseline length of ~15 km, this turbulent constituent must have scale height of 10 km or more, and thus cannot be water vapor, whose scale height is around 1 km. This large scale height turbulent constituent is likely to be water ice or a dry component. Excess path length fluctuation after the WVR phase correction at a baseline length of 10 km is large (>200 micron), which is significant for high frequency (>450 GHz or <700 micron) observations. These results suggest the need for an additional phase correction method, such as fast switching, in addition to the WVR phase correction. We simulated the fast switching, and the result suggests that it works well, with shorter cycle times linearly improving the coherence.
The Atacama Large millimeter/submillimeter Array (ALMA) obtains spatial resolutions of 15 to 5 milli-arcsecond (mas) at 275-950GHz (0.87-0.32mm) with 16km baselines. Calibration at higher-frequencies is challenging as ALMA sensitivity and quasar dens ity decrease. The Band-to-Band (B2B) technique observes a detectable quasar at lower frequency that is closer to the target, compared to one at the target high-frequency. Calibration involves a nearly constant instrumental phase offset between the frequencies and the conversion of the temporal phases to the target frequency. The instrumental offsets are solved with a differential-gain-calibration (DGC) sequence, consisting of alternating low and high frequency scans of strong quasar. Here we compare B2B and in-band phase referencing for high-frequencies ($>$289GHz) using 2-15km baselines and calibrator separation angles between $sim$0.68 and $sim$11.65$^{circ}$. The analysis shows that: (1) DGC for B2B produces a coherence loss $<$7% for DGC phase RMS residuals $<$30$^{circ}$. (2) B2B images using close calibrators ( $<$1.67$^{circ}$ ) are superior to in-band images using distant ones ( $>$2.42$^{circ}$ ). (3) For more distant calibrators, B2B is preferred if it provides a calibrator $sim$2$^{circ}$ closer than the best in-band calibrator. (4) Decreasing image coherence and poorer image quality occur with increasing phase calibrator separation angle because of uncertainties in the antenna positions and sub-optimal phase referencing. (5) To achieve $>$70% coherence for long-baseline (16 km) band 7 (289GHz) observations, calibrators should be within $sim$4$^{circ}$ of the target.
383 - D. Cherdack , E. Worcester 2015
A session studying systematics in long-baseline neutrino oscillation physics was held July 14-18, 2014 as part of CETUP* 2014. Systematic effects from flux normalization and modeling, modeling of cross sections and nuclear interactions, and far detec tor effects were addressed. Experts presented the capabilities of existing and planned tools. A program of study to determine estimates of and requirements for the size of these effects was designed. This document summarizes the results of the CETUP* systematics workshop and the current status of systematic uncertainty studies in long-baseline neutrino oscillation measurements.
Using the Atacama Large Millimeter/submillimeter Array (ALMA), we observed the young Herbig star HD 100546, host to a prominent disk with a deep, wide gap in the dust. The high-resolution 1.3 mm continuum observation reveals fine radial and azimuthal substructures in the form of a complex maze of ridges and trenches sculpting a dust ring. The $^{12}$CO(2-1) channel maps are modulated by wiggles or kinks that deviate from Keplerian kinematics particularly over the continuum ring, where deviations span 90$^circ$ in azimuth, covering 5 km s$^{-1}$. The most pronounced wiggle resembles the imprint of an embedded massive planet of at least 5 M$_{rm Jup}$ predicted from previous hydrodynamical simulations (Perez, Casassus, & Benitez-Llambay 2018). Such planet is expected to open a deep gap in both gas and dust density fields within a few orbital timescales, yet the kinematic wiggles lie near ridges in the continuum. The lesser strength of the wiggles in the $^{13}$CO and C$^{18}$O isotopologues show that the kinematic signature weakens at lower disk heights, and suggests qualitatively that it is due to vertical flows in the disk surface. Within the gap, the velocity field transitions from Keplerian to strongly non-Keplerian via a twist in position angle, suggesting the presence of another perturber and/or an inner warp. We also present VLT/SPHERE sparse aperture masking data which recovers scattered light emission from the gaps edges but shows no evidence for signal within the gap, discarding a stellar binary origin for its opening.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا