ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Standard Neutrino Interactions in the mu-tau sector

95   0   0.0 ( 0 )
 نشر من قبل Warren Wright
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the effects of non-standard neutrino interactions on muon rates in high statistics atmospheric neutrino oscillation experiments like IceCube DeepCore. We concentrate on the mu-tau sector, which is presently the least constrained. It is shown that the magnitude of the effects depends strongly on the sign of the Epsilon_MuTau parameter describing this non-standard interactions. A simple analytic model is used to understand the parameter space where differences between the two signs are maximized. We discuss how this effect is partially degenerate with changing the neutrino mass hierarchy, as well as how this degeneracy could be lifted.



قيم البحث

اقرأ أيضاً

138 - A. Palazzo , J. W. F. Valle 2009
Solar and KamLAND data are in slight tension when interpreted in the standard two-flavor oscillations framework and this may be alleviated allowing for a non-zero value of the mixing angle theta_13. Here we show that, likewise, non-standard flavor-ch anging interactions (FCI), possibly intervening in the propagation of solar neutrinos, are equally able to alleviate this tension and therefore constitute a potential source of confusion in the determination of theta_13. By performing a full three-flavor analysis of solar and KamLAND data in presence of FCI we provide a quantitative description of the degeneracy existing between theta_13 and the vectorial coupling eps_etau^dV characterizing the non-standard transitions between nu_e and nu_tau in the forward scattering process with d-type quarks. We find that couplings with magnitude eps_etau^dV ~ 10%, compatible with the existing bounds, can mimic the non-zero values of theta_13 indicated by the latest analyses.
187 - O. G. Miranda , H. Nunokawa 2015
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino param eters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.
Nonstandard interactions (NSIs), possible subleading effects originating from new physics beyond the Standard Model, may affect the propagation of neutrinos and eventually contribute to measurements of neutrino oscillations. Besides this, $ mu-tau $ reflection symmetry, naturally predicted by non-Abelian discrete flavor symmetries, has been very successful in explaining the observed leptonic mixing patterns. In this work, we study the combined effect of both. We present an $S_4$ flavor model with $mu-tau$ reflection symmetry realized in both neutrino masses and NSIs. Under this formalism, we perform a detailed study for the upcoming neutrino experiments DUNE and T2HK. Our simulation results show that under the $mu-tau $ reflection symmetry, NSI parameters are further constrained and the mass ordering sensitivity is less affected by the presence of NSIs.
We discuss the sensitivity reach of a neutrino factory measurement to non-standard neutrino interactions (NSI), which may exist as a low-energy manifestation of physics beyond the Standard Model. We use the muon appearance mode u_e --> u_mu and con sider two detectors, one at 3000 km and the other at 7000 km. Assuming the effects of NSI at the production and the detection are negligible, we discuss the sensitivities to NSI and the simultaneous determination of theta_{13} and delta by examining the effects in the neutrino propagation of various systems in which two NSI parameters epsilon_{alpha beta} are switched on. The sensitivities to off-diagonal epsilons are found to be excellent up to small values of theta_{13}. We demonstrate that the two-detector setting is powerful enough to resolve the theta_{13}-NSI confusion problem. We believe that the results obtained in this paper open the door to the possibility of using neutrino factory as a discovery machine for NSI while keeping its primary function of performing precision measurements of the lepton mixing parameters.
In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only if the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. We find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا