ترغب بنشر مسار تعليمي؟ اضغط هنا

The G+M eclipsing binary V530 Orionis: A stringent test of magnetic stellar evolution models for low-mass stars

171   0   0.0 ( 0 )
 نشر من قبل Guillermo Torres
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Torres




اسأل ChatGPT حول البحث

We report extensive photometric and spectroscopic observations of the 6.1-day period, G+M-type detached double-lined eclipsing binary V530 Ori, an important new benchmark system for testing stellar evolution models for low-mass stars. We determine accurate masses and radii for the components with errors of 0.7% and 1.3%, as follows: M(A) = 1.0038 +/- 0.0066 M(sun), M(B) = 0.5955 +/- 0.0022 M(sun), R(A) = 0.980 +/- 0.013 R(sun), and R(B) = 0.5873 +/- 0.0067 R(sun). The effective temperatures are 5890 +/- 100 K (G1V) and 3880 +/- 120 K (M1V), respectively. A detailed chemical analysis probing more than 20 elements in the primary spectrum shows the system to have a slightly subsolar abundance, with [Fe/H] = -0.12 +/- 0.08. A comparison with theory reveals that standard models underpredict the radius and overpredict the temperature of the secondary, as has been found previously for other M dwarfs. On the other hand, models from the Dartmouth series incorporating magnetic fields are able to match the observations of the secondary star at the same age as the primary (3 Gyr) with a surface field strength of 2.1 +/- 0.4 kG when using a rotational dynamo prescription, or 1.3 +/- 0.4 kG with a turbulent dynamo approach, not far from our empirical estimate for this star of 0.83 +/- 0.65 kG. The observations are most consistent with magnetic fields playing only a small role in changing the global properties of the primary. The V530 Ori system thus provides an important demonstration that recent advances in modeling appear to be on the right track to explain the long-standing problem of radius inflation and temperature suppression in low-mass stars.

قيم البحث

اقرأ أيضاً

153 - Guillermo Torres 2013
We report differential photometric observations and radial-velocity measurements of the detached, 1.69-day period, double-lined eclipsing binary AQ Ser. Accurate masses and radii for the components are determined to better than 1.8% and 1.1%, respect ively, and are M1 = 1.417 +/- 0.021 MSun, M2 = 1.346 +/- 0.024 MSun, R1 = 2.451 +/- 0.027 RSun, and R2 = 2.281 +/- 0.014 RSun. The temperatures are 6340 +/- 100 K (spectral type F6) and 6430 +/- 100 K (F5), respectively. Both stars are considerably evolved, such that predictions from stellar evolution theory are particularly sensitive to the degree of extra mixing above the convective core (overshoot). The component masses are different enough to exclude a location in the H-R diagram past the point of central hydrogen exhaustion, which implies the need for extra mixing. Moreover, we find that current main-sequence models are unable to match the observed properties at a single age even when allowing the unknown metallicity, mixing length parameter, and convective overshooting parameter to vary freely and independently for the two components. The age of the more massive star appears systematically younger. AQ Ser and other similarly evolved eclipsing binaries showing the same discrepancy highlight an outstanding and largely overlooked problem with the description of overshooting in current stellar theory.
279 - Gregory A. Feiden 2015
Stellar fundamental properties (masses, radii, effective temperatures) can be extracted from observations of eclipsing binary systems with remarkable precision, often better than 2%. Such precise measurements afford us the opportunity to confront the validity of basic predictions of stellar evolution theory, such as the mass-radius relationship. A brief historical overview of confrontations between stellar models and data from eclipsing binaries is given, highlighting key results and physical insight that have led directly to our present understanding. The current paradigm that standard stellar evolution theory is insufficient to describe the most basic relation, that of a stars mass to its radius, along the main sequence is then described. Departures of theoretical expectations from empirical data, however, provide a rich opportunity to explore various physical solutions, improving our understanding of important stellar astrophysical processes.
We present our new photometric and spectroscopic observations of NSVS 02500276, NSVS 07453183, NSVS 11868841, NSVS 06550671 and NSVS 10653195. The first flare-like event was detected on NSVS07453183. Using the Wilson-Devinney program, the preliminary orbital solutions and starspot parameters are derived. The chromospheric activity indicators show NSVS10653195 and NSVS06550671 are active. Then, we discuss the starspot evolution on the short and long term scale. In the end, we give our future plan.
We report the discovery of KELT J041621-620046, a moderately bright (J$sim$10.2) M dwarf eclipsing binary system at a distance of 39$pm$3 pc. KELT J041621-620046 was first identified as an eclipsing binary using observations from the Kilodegree Extre mely Little Telescope (KELT) survey. The system has a short orbital period of $sim$1.11 days and consists of components with M$_1$ = $0.447^{-0.047}_{+0.052},M_odot$ and M$_2$ = $0.399^{-0.042}_{+0.046},M_odot$ in nearly circular orbits. The radii of the two stars are R$_1$ = $0.540^{-0.032}_{+0.034},R_odot$ and R$_2$ = $0.453pm0.017,R_odot$. Full system and orbital properties were determined (to $sim$10% error) by conducting an EBOP global modeling of the high precision photometric and spectroscopic observations obtained by the KELT Follow-up Network. Each star is larger by 17-28% and cooler by 4-10% than predicted by standard (non-magnetic) stellar models. Strong H$alpha$ emission indicates chromospheric activity in both stars. The observed radii and temperature discrepancies for both components are more consistent with those predicted by empirical relations that account for convective suppression due to magnetic activity.
In recent years, analyses of eclipsing binary systems have unveiled differences between the observed fundamental properties of low-mass stars and those predicted by stellar structure models. Particularly, radius and effective temperatures computed fr om models are ~ 5-10% lower and ~ 3-5% higher than observed, respectively. These discrepancies have been attributed to different factors, notably to the high levels of magnetic activity present on these stars. In this paper, we test the effect of magnetic activity both on models and on the observational analysis of eclipsing binaries using a sample of such systems with accurate fundamental properties. Regarding stellar models, we have found that unrealistically high spot coverages need to be assumed to reproduce the observations. Tests considering metallicity effects and missing opacities on models indicate that these are not able to explain the radius discrepancies observed. With respect to the observations, we have tested the effect of several spot distributions on the light curve analysis. Our results show that spots cause systematic deviations on the stellar radii derived from light curve analysis when distributed mainly over the stellar poles. Assuming the existence of polar spots, overall agreement between models and observations is reached when ~ 35% spot coverage is considered on stellar models. Such spot coverage induces a systematic deviation in the radius determination from the light curve analysis of ~ 3% and is also compatible with the modulations observed on the light curves of these systems. Finally, we have found that the effect of activity or rotation on convective transport in partially radiative stars may also contribute to explain the differences seen in some of the systems with shorter orbital periods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا