ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling and maximizing effective thermal properties by manipulating transient behaviors during energy-system cycles

44   0   0.0 ( 0 )
 نشر من قبل Zhaojing Gao
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transient processes generally constitute part of energy-system cycles. If skillfully manipulated, they actually are capable of assisting systems to behave beneficially to suit designers needs. In the present study, behaviors related to both thermal conductivities ($kappa$) and heat capacities ($c_{v}$) are analyzed. Along with solutions of the temperature and the flow velocity obtained by means of theories and simulations, three findings are reported herein: $(1)$ effective $kappa$ and effective $c_{v}$ can be controlled to vary from their intrinsic material-property values to a few orders of magnitude larger; $(2)$ a parameter, tentatively named as nonlinear thermal bias, is identified and can be used as a criterion in estimating energies transferred into the system during heating processes and effective operating ranges of system temperatures; $(3)$ When a body of water, such as the immense ocean, is subject to the boundary condition of cold bottom and hot top, it may be feasible to manipulate transient behaviors of a solid propeller-like system such that the system can be turned by a weak buoyancy force, induced by the top-to-bottom heat conduction through the propeller, provided that the density of the propeller is selected to be close to that of the water. Such a turning motion serves both purposes of performing the hydraulic work and increasing the effective thermal conductivity of the system.

قيم البحث

اقرأ أيضاً

The derivation and application of the general characteristics of bioheat transfer for medical applications are shown in this paper. Two general bioheat transfer characteristics are derived from solutions of one-dimensional Pennes bioheat transfer equ ation; steady-state thermal penetration depth, which is the deepest depth where the heat effect reaches; and time to reach steady state, which represents the amount of time necessary for temperature distribution to converge to a steady-state. All results are described by dimensionless form; therefore these results provide information on temperature distribution in biological tissue for various thermal therapies by transforming to dimension form.
54 - G. Oelsner , U. Hubner , 2018
We study the influence of a strong off-resonant driving signal to the energy levels of a superconducting flux qubit both experimentally and theoretically. In the experiment, we carry out a three-tone spectroscopy. This allows us to directly observe t he modification of the qubits energy levels by the dynamical Stark shift caused by the driving signal. A theoretical treatment including corrections from both, rotating and counter-rotating frame, allowed us to completely explain the observed experimental results and to reconstruct the influence of the strong driving to the dissipative dynamics as well as to the coupling constants of the qubit. As one potential application, the tunability of the minimal energy-level splitting of a superconducting qubit by a microwave induced dynamical Stark shift can help to overcome the parameter spread induced by the micro fabrication of superconducting artificial quantum circuits.
149 - J. H. Kim , S. J. Kim , C. I. Lee 2009
We grew the single crystal of stoichiometric Tm5Si2.0Ge2.0 using a Bridgeman method and performed XRD, EDS, magnetization, ac and dc magnetic susceptibilities, specific heat, electrical resistivity and XPS experiments. It crystallizes in orthorhombic Sm5Ge4-type structure. The mean valence of Tm ions in Tm5Si2.0Ge2.0 is almost trivalent. The 4f states is split by the crystalline electric field. The ground state exhibits the long range antiferromagnetic order with the ferromagnetically coupled magnetic moments in the ac plane below 8.01 K, while the exited states exhibit the reduction of magnetic moment and magnetic entropy and -log T-behaviors observed in Kondo materials.
Fe3O4 (magnetite) is one of the most elusive quantum materials and at the same time one of the most studied transition metal oxide materials for thin film applications. The theoretically expected half-metallic behavior generates high expectations tha t it can be used in spintronic devices. Yet, despite the tremendous amount of work devoted to preparing thin films, the enigmatic first order metal-insulator transition and the hall mark of magnetite known as the Verwey transition, is in thin films extremely broad and occurs at substantially lower temperatures as compared to that in high quality bulk single crystals. Here we have succeeded in finding and making a particular class of substrates that allows the growth of magnetite thin films with the Verwey transition as sharp as in the bulk. Moreover, we are now able to tune the transition temperature and, using tensile strain, increase it to substantially higher values than in the bulk.
We investigate how collective behaviors of vibrations such as cooperativity and interference can enhance energy transfer in a nontrivial way, focusing on an example of a donor-bridge-acceptor trimeric chromophore system coupled to two vibrational deg rees of freedom. Employing parameters selected to provide an overall uphill energy transfer from donor to acceptor, we use numerical calculations of dynamics in a coupled exciton-vibration basis, together with perturbation-based analytics and calculation of vibronic spectra, we identify clear spectral features of single- and multi-phonon vibrationally-assisted energy transfer (VAET) dynamics, where the latter include up to six-phonon contributions. We identify signatures of vibrational cooperation and interference that provide enhancement of energy transfer relative to that obtained from VAET with a single vibrational mode. We observe a phononic analogue of two-photon absorption, as well as a novel heteroexcitation mechanism in which a single phonon gives rise to simultaneous excitation of both the trimeric system and the vibrational degrees of freedom. The impact of vibrations and of the one- and two-phonon VAET processes on the energy transfer are seen to be quite different in the weak and strong site-vibration coupling regimes. In the weak coupling regime, two-phonon processes dominate, whereas in the strong coupling regime up to six-phonon VAET processes can be induced. The VAET features are seen to be enhanced with increasing temperature and site-vibration coupling strength, and are reduced in the presence of dissipation. We analyze the dependence of these phenomena on the explicit form of the chromophore-vibration couplings, with comparison of VAET spectra for local and non-local couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا