ترغب بنشر مسار تعليمي؟ اضغط هنا

STARS: A software application for the EBEX autonomous daytime star cameras

69   0   0.0 ( 0 )
 نشر من قبل Daniel Chapman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The E and B Experiment (EBEX) is a balloon-borne telescope designed to probe polarization signals in the CMB resulting from primordial gravitational waves, gravitational lensing, and Galactic dust emission. EBEX completed an 11 day flight over Antarctica in January 2013 and data analysis is underway. EBEX employs two star cameras to achieve its real-time and post-flight pointing requirements. We wrote a software application called STARS to operate, command, and collect data from each of the star cameras, and to interface them with the main flight computer. We paid special attention to make the software robust against potential in-flight failures. We report on the implementation, testing, and successful in flight performance of STARS.

قيم البحث

اقرأ أيضاً

264 - Marie Rex 2006
We have developed two redundant daytime star cameras to provide the fine pointing solution for the balloon-borne submillimeter telescope, BLAST. The cameras are capable of providing a reconstructed pointing solution with an absolute accuracy < 5 arcs econds. They are sensitive to stars down to magnitudes ~ 9 in daytime float conditions. Each camera combines a 1 megapixel CCD with a 200 mm f/2 lens to image a 2 degree x 2.5 degree field of the sky. The instruments are autonomous. An internal computer controls the temperature, adjusts the focus, and determines a real-time pointing solution at 1 Hz. The mechanical details and flight performance of these instruments are presented.
335 - Michael Milligan 2010
We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight th at circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3~GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.
The E and B Experiment (EBEX) was a long-duration balloon-borne instrument designed to measure the polarization of the cosmic microwave background (CMB) radiation. EBEX was the first balloon-borne instrument to implement a kilo-pixel array of transit ion edge sensor (TES) bolometric detectors and the first CMB experiment to use the digital version of the frequency domain multiplexing system for readout of the TES array. The scan strategy relied on 40 s peak-to-peak constant velocity azimuthal scans. We discuss the unique demands on the design and operation of the payload that resulted from these new technologies and the scan strategy. We describe the solutions implemented including the development of a power system designed to provide a total of at least 2.3 kW, a cooling system to dissipate 590 W consumed by the detectors readout system, software to manage and handle the data of the kilo-pixel array, and specialized attitude reconstruction software. We present flight performance data showing faultless management of the TES array, adequate powering and cooling of the readout electronics, and constraint of attitude reconstruction errors such that the spurious B-modes they induced were less than 10% of CMB B-mode power spectrum with $r=0.05$.
In 2015/16, the photomultiplier cameras of the H.E.S.S. Cherenkov telescopes CT1-4 have undergone a major upgrade. The entire electronics has been replaced, using NECTAr chips for the front-end readout. A new ventilation system has been installed and several auxiliary components have been replaced. Besides this, the internal control and readout software was rewritten from scratch in a modern and modular way. Ethernet technology was used wherever possible to ensure both flexibility, stability and high bandwidth. An overview of the installed components will be given.
Robo-AO is the first astronomical laser guide star adaptive optics (AO) system designed to operate completely independent of human supervision. A single computer commands the AO system, the laser guide star, visible and near-infrared science cameras (which double as tip-tip sensors), the telescope, and other instrument functions. Autonomous startup and shutdown sequences as well as concatenated visible observations were demonstrated in late 2011. The fully robotic software is currently operating during a month long demonstration of Robo-AO at the Palomar Observatory 60-inch telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا