ترغب بنشر مسار تعليمي؟ اضغط هنا

The category of Waldhausen categories as a closed multicategory

347   0   0.0 ( 0 )
 نشر من قبل Inna Zakharevich
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Inna Zakharevich




اسأل ChatGPT حول البحث

This paper works out in detail the closed multicategory structure of the category of Waldhausen categories.



قيم البحث

اقرأ أيضاً

In this paper, we study weakly unital dg categories as they were defined by Kontsevich and Soibelman [KS, Sect.4]. We construct a cofibrantly generated Quillen model structure on the category $mathrm{Cat}_{mathrm{dgwu}}(Bbbk)$ of small weakly unital dg categories over a field $Bbbk$. Our model structure can be thought of as an extension of the model structure on the category $mathrm{Cat}_{mathrm{dg}}(Bbbk)$ of (strictly unital) small dg categories over $Bbbk$, due to Tabuada [Tab]. More precisely, we show that the imbedding of $mathrm{Cat}_{mathrm{dg}}(Bbbk)$ to $mathrm{Cat}_{mathrm{dgwu}}(Bbbk)$ is a right adjoint of a Quillen pair of functors. We prove that this Quillen pair is, in turn, a Quillen equivalence. In course of the proof, we study a non-symmetric dg operad $mathcal{O}$, governing the weakly unital dg categories, which is encoded in the Kontsevich-Soibelman definition. We prove that this dg operad is quasi-isomorphic to the operad $mathrm{Assoc}_+$ of unital associative algebras.
We study a categorical construction called the cobordism category, which associates to each Waldhausen category a simplicial category of cospans. We prove that this construction is homotopy equivalent to Waldhausens $S_{bullet}$-construction and ther efore it defines a model for Waldhausen $K$-theory. As an example, we discuss this model for $A$-theory and show that the cobordism category of homotopy finite spaces has the homotopy type of Waldhausens $A(*)$. We also review the canonical map from the cobordism category of manifolds to $A$-theory from this viewpoint.
In this paper, which is subsequent to our previous paper [PS] (but can be read independently from it), we continue our study of the closed model structure on the category $mathrm{Cat}_{mathrm{dgwu}}(Bbbk)$ of small weakly unital dg categories (in the sense of Kontsevich-Soibelman [KS]) over a field $Bbbk$. In [PS], we constructed a closed model structure on the category of weakly unital dg categories, imposing a technical condition on the weakly unital dg categories, saying that $mathrm{id}_xcdot mathrm{id}_x=mathrm{id}_x$ for any object $x$. Although this condition led us to a great simplification, it was redundant and had to be dropped. Here we get rid of this condition, and provide a closed model structure in full generality. The new closed model category is as well cofibrantly generated, and it is proven to be Quillen equivalent to the closed model category $mathrm{Cat}_mathrm{dg}(Bbbk)$ of (strictly unital) dg categories over $Bbbk$, given by Tabuada [Tab1]. Dropping the condition $mathrm{id}_x^2=mathrm{id}_x$ makes the construction of the closed model structure more distant from loc.cit., and requires new constructions. One of them is a pre-triangulated hull of a wu dg category, which in turn is shown to be a wu dg category as well. One example of a weakly unital dg category which naturally appears is the bar-cobar resolution of a dg category. We supply this paper with a refinement of the classical bar-cobar resolution of a unital dg category which is strictly unital (appendix B). A similar construction can be applied to constructing a cofibrant resolution in $mathrm{Cat}_mathrm{dgwu}(Bbbk)$.
166 - Michael Joachim 2007
In this article we build a Quillen model category structure on the category of sequentially complete l.m.c.-C*-algebras such that the corresponding homotopy classes of maps Ho(A,B) for separable C*-algebras A and B coincide with the Kasparov groups K K(A,B). This answers an open question posed by Mark Hovey about the possibility of describing KK-theory for C*-algebras using the language of Quillen model categories.
206 - J.-F. Lafont , I. J. Ortiz 2006
We prove that the Waldhausen Nil-group associated to a virtually cyclic groups that surjects onto the infinite dihedral group vanishes if and only if the corresponding Farrell Nil-group associated to the canonical index two subgroup is trivial. The p roof uses the transfer map to establish one direction, and uses controlled pseudo-isotopy techniques of Farrell-Jones to establish the reverse implication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا