ترغب بنشر مسار تعليمي؟ اضغط هنا

Vigorous thermal excitations in a double-tetrahedral chain of localized Ising spins and mobile electrons mimic a temperature-driven first-order phase transition

30   0   0.0 ( 0 )
 نشر من قبل Strecka Jozef
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hybrid spin-electron system defined on one-dimensional double-tetrahedral chain, in which the localized Ising spin regularly alternates with two mobile electrons delocalized over a triangular plaquette, is exactly solved with the help of generalized decoration-iteration transformation. It is shown that a macroscopic degeneracy of ferromagnetic and ferrimagnetic ground states arising from chiral degrees of freedom of the mobile electrons cannot be lifted by a magnetic field in contrast to a macroscopic degeneracy of the frustrated ground state, which appears owing to a kinetically-driven frustration of the localized Ising spins. An anomalous behavior of all basic thermodynamic quantities can be observed on account of massive thermal excitations, which mimic a temperature-driven first-order phase transition from the non-degenerate frustrated state to the highly degenerate ferrimagnetic state at non-zero magnetic fields. A substantial difference in the respective degeneracies is responsible for an immense low-temperature peak of the specific heat and very abrupt (almost discontinuous) thermal variations of the entropy and sublattice magnetizations.

قيم البحث

اقرأ أيضاً

Dark states are stationary states of a dissipative, Lindblad-type time evolution with zero von Neumann entropy, therefore representing examples of pure, steady quantum states. Non-equilibrium dynamics featuring a dark state recently gained a lot of a ttraction since their implementation in the context of driven-open quantum systems represents a viable possibility to engineer unique, pure states. In this work, we analyze a driven many-body spin system, which undergoes a transition from a dark steady state to a mixed steady state as a function of the driving strength. This transition connects a zero entropy (dark) state with a finite entropy (mixed) state and thus goes beyond the realm of equilibrium statistical mechanics and becomes of genuine nonequilibrium character. We analyze the relevant long wavelength fluctuations driving this transition in a regime where the system performs a discontinuous jump from a dark to a mixed state by means of the renormalization group. This allows us to approach the nonequilibrium dark state transition and identify similarities and clear differences to common, equilibrium phase transitions, and to establish the phenomenology for a first order dark state phase transition.
We study the probability distribution $P(X_N=X,N)$ of the total displacement $X_N$ of an $N$-step run and tumble particle on a line, in presence of a constant nonzero drive $E$. While the central limit theorem predicts a standard Gaussian form for $P (X,N)$ near its peak, we show that for large positive and negative $X$, the distribution exhibits anomalous large deviation forms. For large positive $X$, the associated rate function is nonanalytic at a critical value of the scaled distance from the peak where its first derivative is discontinuous. This signals a first-order dynamical phase transition from a homogeneous `fluid phase to a `condensed phase that is dominated by a single large run. A similar first-order transition occurs for negative large fluctuations as well. Numerical simulations are in excellent agreement with our analytical predictions.
We study the phase transition of the Ising model in networks with core-periphery structures. By Monte Carlo simulations, we show that prior to the order-disorder phase transition the system organizes into an inhomogeneous intermediate phase in which core nodes are much more ordered than peripheral nodes. Interestingly, the susceptibility shows double peaks at two distinct temperatures. We find that, if the connections between core and periphery increase linearly with network size, the first peak does not exhibit any size-dependent effect, and the second one diverges in the limit of infinite network size. Otherwise, if the connections between core and periphery scale sub-linearly with the network size, both peaks of the susceptibility diverge as power laws in the thermodynamic limit. This suggests the appearance of a double transition phenomenon in the Ising model for the latter case. Moreover, we develop a mean-field theory that agrees well with the simulations.
137 - Weiguo Yin 2020
The Ising model, with short-range interactions between constituents, is a basic mathematical model in statistical mechanics. It has been widely used to describe collective phenomena such as order-disorder phase transitions in various physical, biolog ical, economical, and social systems. However, it was proven that spontaneous phase transitions do not exist in the one-dimensional Ising models. Besides low dimensionality, frustration is the other well-known suppressor of phase transitions. Here I show that surprisingly, a strongly frustrated one-dimensional two-leg ladder Ising model can exhibit a marginal finite-temperature phase transition. It features a large latent heat, a sharp peak in specific heat, and unconventional order parameters, which classify the transition as involving an entropy-favored intermediate-temperature ordered state and further unveil a crossover to an exotic normal state in which frustration effectively decouples the two strongly interacted legs in a counterintuitive non-mean-field way. These exact results expose a mathematical structure that has not appeared before in phase-transition problems, and shed new light on our understanding of phase transitions and the dynamical actions of frustration. Applications of this model and its mechanisms to various systems with extensions to consider higher dimensions, quantum characters, or external fields, etc. are anticipated and briefly discussed---with insights into the puzzling phenomena of strange strong frustration and intermediate-temperature orders such as the Bozin-Billinge orbital-degeneracy-lifting recently discovered in real materials.
66 - Yi Liao , Ping-Xing Chen 2018
For the one-dimensional Ising chain with spin-$1/2$ and exchange couple $J$ in a steady transverse field(TF), an analytical theory has well been developed in terms of some topological order parameters such as Berry phase(BP). For a TF Ising chain, th e nonzero BP which depends on the exchange couple and the field strength characterizes the corresponding symmetry breaking of parity and time reversal(PT). However, there seems to exist a topological phase transition for the one-dimensional Ising chain in a longitudinal field(LF) with the reduced field strength $epsilon$. If the LF is added at zero temperature, researchers believe that the LF also could influence the PT-symmetry and there exists the discontinuous BP. But the theoretic characterization has not been well founded. This paper tries to aim at this problem. With the Jordan-Wigner transformation, we give the four-fermion interaction form of the Hamiltonian in the one-dimensional Ising chain with a LF. Further by the method of Wicks theorem and the mean-field theory, the four-fermion interaction is well dealt with. We solve the ground state energy and the ground wave function in the momentum space. We discuss the BP and suggest that there exist nonzero BPs when $epsilon=0$ in the paramagnetic case where $J<0$ and when $-1<epsilon<1$, in the diamagnetic case where $J>0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا