ترغب بنشر مسار تعليمي؟ اضغط هنا

Replica Fourier Transform: Properties and Applications

120   0   0.0 ( 0 )
 نشر من قبل Andrea Crisanti
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in con- junction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a system- atic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically.



قيم البحث

اقرأ أيضاً

We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substanti ally this picture by: (i) determining the precise location of the clustering transition; (ii) uncovering a second `condensation phase transition in the structure of the solution set for k larger or equal than 4. These results both follow from computing the large deviation rate of the internal entropy of pure states. From a technical point of view our main contributions are a simplified version of the cavity formalism for special values of the Parisi replica symmetry breaking parameter m (in particular for m=1 via a correspondence with the tree reconstruction problem) and new large-k expansions.
An expansion for the free energy functional of the Sherrington-Kirkpatrick (SK) model, around the Replica Symmetric SK solution $Q^{({rm RS})}_{ab} = delta_{ab} + q(1-delta_{ab})$ is investigated. In particular, when the expansion is truncated to fou rth order in. $Q_{ab} - Q^{({rm RS})}_{ab}$. The Full Replica Symmetry Broken (FRSB) solution is explicitly found but it turns out to exist only in the range of temperature $0.549...leq Tleq T_c=1$, not including T=0. On the other hand an expansion around the paramagnetic solution $Q^{({rm PM})}_{ab} = delta_{ab}$ up to fourth order yields a FRSB solution that exists in a limited temperature range $0.915...leq T leq T_c=1$.
74 - C.M. Newman 2001
We prove the impossibility of recent attempts to decouple the Replica Symmetry Breaking (RSB) picture for finite-dimensional spin glasses from the existence of many thermodynamic (i.e., infinite-volume) pure states while preserving another signature RSB feature --- space filling relative domain walls between different finite-volume states. Thus revisions of the notion of pure states cannot shield the RSB picture from the internal contradictions that rule out its physical correctness in finite dimensions at low temperature in large finite volume.
83 - J. Yeo , M. A. Moore 2019
The fully-connected Ising $p$-spin model has for $p >2$ a discontinuous phase transition from the paramagnetic phase to a stable state with one-step replica symmetry breaking (1RSB). However, simulations in three dimension do not look like these mean -field results and have features more like those which would arise with full replica symmetry breaking (FRSB). To help understand how this might come about we have studied in the fully connected $p$-spin model the state of two-step replica symmetry breaking (2RSB). It has a free energy degenerate with that of 1RSB, but the weight of the additional peak in $P(q)$ vanishes. We expect that the state with full replica symmetry breaking (FRSB) is also degenerate with that of 1RSB. We suggest that finite size effects will give a non-vanishing weight to the FRSB features, as also will fluctuations about the mean-field solution. Our conclusion is that outside the fully connected model in the thermodynamic limit, FRSB is to be expected rather than 1RSB.
The conjugate gradient (CG) method, a standard and vital way of minimizing the energy of a variational state, is applied to solve several problems in Skyrmion physics. The single-Skyrmion profile optimizing the energy of a two-dimensional chiral magn et is found without relying on specific boundary conditions. The two-dimensional Skyrmion lattice and three-dimensional hedgehog crystal state is recovered with efficiency using the modified CG (p-GD) method. The p-GD method is proposed as a complement to the traditional Monte Carlo annealing method, which still gives better results for the ground state but at the far greater cost in computation time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا