ﻻ يوجد ملخص باللغة العربية
The Replica Fourier Transform is the generalization of the discrete Fourier Transform to quantities defined on an ultrametric tree. It finds use in con- junction of the replica method used to study thermodynamics properties of disordered systems such as spin glasses. Its definition is presented in a system- atic and simple form and its use illustrated with some representative examples. In particular we give a detailed discussion of the diagonalization in the Replica Fourier Space of the Hessian matrix of the Gaussian fluctuations about the mean field saddle point of spin glass theory. The general results are finally discussed for a generic spherical spin glass model, where the Hessian can be computed analytically.
We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substanti
An expansion for the free energy functional of the Sherrington-Kirkpatrick (SK) model, around the Replica Symmetric SK solution $Q^{({rm RS})}_{ab} = delta_{ab} + q(1-delta_{ab})$ is investigated. In particular, when the expansion is truncated to fou
We prove the impossibility of recent attempts to decouple the Replica Symmetry Breaking (RSB) picture for finite-dimensional spin glasses from the existence of many thermodynamic (i.e., infinite-volume) pure states while preserving another signature
The fully-connected Ising $p$-spin model has for $p >2$ a discontinuous phase transition from the paramagnetic phase to a stable state with one-step replica symmetry breaking (1RSB). However, simulations in three dimension do not look like these mean
The conjugate gradient (CG) method, a standard and vital way of minimizing the energy of a variational state, is applied to solve several problems in Skyrmion physics. The single-Skyrmion profile optimizing the energy of a two-dimensional chiral magn