ﻻ يوجد ملخص باللغة العربية
We present a new scheme for the compression of one-way quantum messages, in the setting of coherent entanglement assisted quantum communication. For this, we present a new technical tool that we call the convex split lemma, which is inspired by the classical compression schemes that use rejection sampling procedure. As a consequence, we show new bounds on the quantum communication cost of single-shot entanglement-assisted one-way quantum state redistribution task and for the sub-tasks quantum state splitting and quantum state merging. Our upper and lower bounds are tight up to a constant and hence stronger than previously known best bounds for above tasks. Our protocols use explicit quantum operations on the sides of Alice and Bob, which are different from the decoupling by random unitaries approach used in previous works. As another application, we present a port-based teleportation scheme which works when the set of input states is restricted to a known ensemble, hence potentially saving the number of required ports. Furthermore, in case of no prior knowledge about the set of input states, our average success fidelity matches the known average success fidelity, providing a new port-based teleportation scheme with similar performance as appears in literature.
The quantum entropy-typical subspace theory is specified. It is shown that any mixed state with von Neumann entropy less than h can be preserved approximately by the entropy-typical subspace with entropy= h. This result implies an universal compressi
We propose a linear compression technique for the time interval distribution of photon pairs. Using a partially frequency-entangled two-photon (TP) state with appropriate mean time width, the compressed TP time interval width can be kept in the minim
Quantum addition channels have been recently introduced in the context of deriving entropic power inequalities for finite dimensional quantum systems. We prove a reverse entropy power equality which can be used to analytically prove an inequality con
For space-based laser communications, when the mean photon number per received optical pulse is much smaller than one, there is a large gap between communications capacity achievable with a receiver that performs individual pulse-by-pulse detection,
We present a general theory of entanglement-assisted quantum convolutional coding. The codes have a convolutional or memory structure, they assume that the sender and receiver share noiseless entanglement prior to quantum communication, and they are