ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of inhomogeneities and drift on the dynamics of temporal solitons in fiber cavities and microresonators

106   0   0.0 ( 0 )
 نشر من قبل Manuel A. Matias
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Ref. [Parra-Rivas at al., 2013], using the Swift-Hohenberg equation, we introduced a mechanism that allows to generate oscillatory and excitable soliton dynamics. This mechanism was based on a competition between a pinning force at inhomogeneities and a pulling force due to drift. Here, we study the effect of such inhomogeneities and drift on temporal solitons and Kerr frequency combs in fiber cavities and microresonators, described by the Lugiato-Lefever equation with periodic boundary conditions. We demonstrate that for low values of the frequency detuning the competition between inhomogeneities and drift leads to similar dynamics at the defect location, confirming the generality of the mechanism. The intrinsic periodic nature of ring cavities and microresonators introduces, however, some interesting differences in the final global states. For higher values of the detuning we observe that the dynamics is no longer described by the same mechanism and it is considerably more complex.



قيم البحث

اقرأ أيضاً

Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of o ptical fiber pumped by a continuous-wave holding laser beam. The cavity solitons are trapped into specific time slots through a phase-modulation of the holding beam, and moved around in time by manipulating the phase profile. We report both continuous and discrete manipulations of the temporal positions of picosecond light pulses, with the ability to simultaneously and independently control several pulses within a train. We also study the transient drifting dynamics and show complete agreement with theoretical predictions. Our study demonstrates how the unique particle-like characteristics of cavity solitons can be leveraged to achieve unprecedented control over light. These results could have significant ramifications for optical information processing.
130 - Zongda Li , Yiqing Xu , Caleb Todd 2021
Dissipative Kerr cavity solitons (CSs) are persisting pulses of light that manifest themselves in driven optical resonators and that have attracted significant attention over the last decade. Whilst the vast majority of studies have revolved around c onditions where the resonator exhibits strong anomalous dispersion, recent studies have shown that solitons with unique characteristics and dynamics can arise under conditions of near-zero-dispersion driving. Here we report on experimental studies of the existence and stability dynamics of Kerr CSs under such conditions. In particular, we experimentally probe the solitons range of existence and examine how their breathing instabilities are modified when group-velocity dispersion is close to zero, such that higher-order dispersion terms play a significant role. On the one hand, our experiments directly confirm earlier theoretical works that predict (i) breathing near-zero-dispersion solitons to emit polychromatic dispersive radiation, and (ii) that higher-order dispersion can extend the range over which the solitons are stable. On the other hand, our experiments also reveal a novel cross-over scenario, whereby the influence of higher-order dispersion changes from stabilising to destabilising. Our comprehensive experiments sample soliton dynamics both in the normal and anomalous dispersion regimes, and our results are in good agreement with numerical simulations and theoretical predictions.
We analyze the consequences of dissipative heating in driven Kerr microresonators theoretically and numerically, using a thermal Lugiato-Lefever model. We show that thermal sensitivity modifies the stability range of continuous wave in a way that blo cks direct access to broadband frequency-comb forming waveforms, and we propose a deterministic access path that bypasses the thermal instability barrier. We describe a novel thermal instability that leads to thermooptical oscillations via a Hopf bifurcation.
We introduce a model for spatiotemporal modelocking in multimode fiber lasers, which is based on the (3+1)-dimensional cubic-quintic complex Ginzburg-Landau equation (cGLE) with conservative and dissipative nonlinearities and a 2-dimensional transver se trapping potential. Systematic numerical analysis reveals a variety of stable nonlinear modes, including stable fundamental solitons and breathers, as well as solitary vortices with winding number $n=1$, while vortices with $n=2$ are unstable, splitting into persistently rotating bound states of two unitary vortices. A characteristic feature of the system is bistability between the fundamental and vortex spatiotemporal solitons.
274 - Zhonghan Wu , Yiran Gao , Jian Dai 2020
Dual-coupled structure is typically used to actively change the local dispersion of microresonator through controllable avoided mode crossings (AMXs). In this paper, we investigate the reconfigurability of perfect soliton crystals (PSCs) based on dua l-coupled microresonators. The switching dynamics of PSCs are numerically simulated using perturbed Lugiato-Lefever equation (LLE). Nonlinear phenomena such as solitons rearranging, merging and bursting are observed in the switching process. Specially, for the first time, we have discovered an unexplored $PSC$ $region$ in the microcomb power-detuning phase plane. In $PSC$ $region$, the soliton number ($N$) of PSC state can be switched successively and bidirectionally in a defect-free fashion, verifying the feasibility and advantages of our scheme. The reconfigurability of PSCs would further liberate the application potential of microcombs in a wide range of fields, including frequency metrology, optical communications, and signal-processing systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا