ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Scattering Studies of the Ferroelectric Distortion and Spin Dynamics in the Type-1 Multiferroic Perovskite Sr0.56Ba0.44MnO3

109   0   0.0 ( 0 )
 نشر من قبل Jeffrey Lynn
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic order, spin dynamics, and crystal structure of the multiferroic Sr0.56Ba0.44MnO3 have been investigated using neutron and x-ray scattering. Ferroelectricity develops at TC=305 K with a polarization of 4.2 microC/cm2 associated with the displacements of the Mn ions, while the Mn4+ spins order below TN = 200 K into a simple G-type commensurate magnetic structure. Below TN the ferroelectric order decreases dramatically demonstrating that the two order parameters are strongly coupled. The ground state spin dynamics are characterized by a spin gap of 4.6(5) meV and the magnon density of states peaking at 43 meV. Detailed spin wave simulations with a gap and isotropic exchange of J=4.8(2) meV describe the excitation spectrum well. Above TN strong spin correlations coexist with robust ferroelectric order.



قيم البحث

اقرأ أيضاً

We investigate the crystal structure in multiferroic tetragonal perovskite Sr$_{1/2}$Ba$_{1/2}$MnO$_3$ with high accuracy of the order of 10$^{-3}$ Angstrom for an atomic displacement. The large atomic displacement for Mn ion from the centerosymmetri c position, comparable with the off-centering distortion in the tetragonal ferroelectric BaTiO$_3$, is observed in the ferroelectric phase ($T_mathrm{N}$ $leq$ $T$ $leq$ $T_mathrm{C}$). In stark contrast, in the multiferroic phase ($T$ $leq$ $T_mathrm{N}$), the atomic displacement for Mn ion is suppressed, but those for O ions are enlarged. The atomic displacements in the polar crystal structures are also analyzed in terms of the ferroelectric modes. In the ferroelectric phase, the atomic displacements are decomposed into dominant positive Slater, negative Last, and small positive Axe modes. The suppression of Slater and Last modes, the sign change of Last mode, and the enlargement of Axe mode are found in the multiferroic phase. The ferroelectric distortion is well reproduced by a first-principles calculation based on Berry phase method, providing an additional information on competing mechanisms to induce the polarization, electronic $p$-$d$ hybridization vs. magnetic exchange-striction.
We report a temperature-dependent Raman and neutron scattering investigation of the multiferroic material bismuth ferrite BiFeO3 (BFO).
As a simple cubic system with only one f electron per cerium ion, CeB6 is of model character to investigate the interplay of orbital phenomena with magnetism. It is also a textbook example of a compound that exhibits magnetically hidden order -- a lo w-temperature magnetic phase with ordered quadrupolar moments. It is difficult to identify the symmetry of such hidden-order states in common x-ray or neutron scattering experiments, as there is no signal in zero field, however alternative techniques like neutron diffraction in external field, resonant x-ray scattering, or ultrasonic investigations can be applied. Another possible method for characterizing hidden order is to look at the magnetic excitation spectrum, which carries the imprint of the multipolar interactions and the hidden order parameter in its dispersion relations. Using a specific candidate model, the dispersion is calculated and then compared to that measured with inelastic neutron scattering. Until recently, only a limited amount of data which show the presence of dispersing excitations measured along a few high-symmetry directions in an applied magnetic field were available. Early attempts to compare such calculations with experiments showed that only strongest modes at high-symmetry points could be identified. The present review of the most recent neutron-scattering results is intended to satisfy the need of more accurate inelastic neutron-scattering experiments as a function of field and temperature, giving us the opportunity to identify existing excitation branches in CeB6 and conclusively compare them with the theoretically predicted multipolar excitations.
Neutrons have played an important role in advancing our understanding of the pairing mechanism and the symmetry of the superconducting energy gap in the iron arsenide compounds. Neutron measurements of the phonon density-of-state are in good agreemen t with ab initio calculations, provided the magnetism of the iron atoms is taken into account. However, the predicted superconducting transition temperatures are less than 1 K, making a conventional phononic mechanism for superconductivity highly unlikely. Measurements of the spin dynamics within the spin density wave phase of the parent compounds show evidence of strongly dispersive spin waves with exchange interactions consistent with the observed magnetic order. Antiferromagnetic fluctuations persist in the normal phase of the superconducting compounds, but they are more diffuse. Below Tc, there is evidence compounds that these fluctuations condense into a resonant spin excitation at the antiferromagnetic wavevector with an energy that scales with Tc, consistent with unconventional superconductivity of extended-s+/- wave symmetry.
We present a comprehensive Small Angle Neutron Scattering (SANS) and Neutron Spin Echo Spectroscopy (NSE) study of the structural and dynamical aspects of the helimagnetic transition in Fe$_{1-x}$Co$_x$Si with $x$ = 0.30. In contrast to the sharp tra nsition observed in the archetype chiral magnet MnSi, the transition in Fe$_{1-x}$Co$_x$Si is gradual and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe$_{1-x}$Co$_x$Si differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا