ترغب بنشر مسار تعليمي؟ اضغط هنا

Multirhythmicity in an optoelectronic oscillator with large delay

193   0   0.0 ( 0 )
 نشر من قبل Lionel Weicker
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An optoelectronic oscillator exhibiting a large delay in its feedback loop is studied both experimentally and theoretically. We show that multiple square-wave oscillations may coexist for the same values of the parameters (multirhythmicity). Depending on the sign of the phase shift, these regimes admit either periods close to an integer fraction of the delay or periods close to an odd integer fraction of twice the delay. These periodic solutions emerge from successive Hopf bifurcation points and stabilize at a finite amplitude following a scenario similar to Eckhaus instability in spatially extended systems. We find quantitative agreements between experiments and numerical simulations. The linear stability of the square-waves is substantiated analytically by determining stable fixed points of a map.



قيم البحث

اقرأ أيضاً

We report on a tunable all-optical delay line for pulses with optical frequency within the Rb $D_2$ absorption line. Using frequency tuning between absorption components from different isotopes, pulses of 10 ns duration are delayed in a 10 cm hot vap our cell by up to 40 ns while the transmission remains above 10%. The use of two isotopes allows the delay to be increased or decreased by optical pumping with a second laser, producing rapid tuning over a range of more than 40% of the initial delay at 110$^{circ}$C. We investigate the frequency and intensity ranges in which this delay line can be realised. Our observations are in good agreement with a numerical model of the system.
Efficient, on-chip optical nonlinear processes are of great interest for the development of compact, robust, low-power consuming systems for applications in spectroscopy, metrology, sensing and classical and quantum optical information processing. Di amond holds promise for these applications, owing to its exceptional properties. However, although significant progress has been made in the development of an integrated diamond photonics platform, optical nonlinearities in diamond have not been explored much apart from Raman processes in bulk samples. Here, we demonstrate optical parametric oscillations (OPO) via four wave mixing (FWM) in single crystal diamond (SCD) optical networks on-chip consisting of waveguide-coupled microring resonators. Threshold powers as low as 20mW are enabled by ultra-high quality factor (1*10^6) diamond ring resonators operating at telecom wavelengths, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the inferred nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.
We demonstrate a combination of optical and electronic feedback that significantly narrows the linewidth of distributed Bragg reflector lasers (DBRs). We use optical feedback from a long external fiber path to reduce the high-frequency noise of the l aser. An electro-optic modulator placed inside the optical feedback path allows us to apply electronic feedback to the laser frequency with very large bandwidth, enabling robust and stable locking to a reference cavity that suppresses low-frequency components of laser noise. The combination of optical and electronic feedback allows us to significantly lower the frequency noise power spectral density of the laser across all frequencies and narrow its linewidth from a free-running value of 1.1 MHz to a stabilized value of 1.9 kHz, limited by the detection system resolution. This approach enables the construction of robust lasers with sub-kHz linewidth based on DBRs across a broad range of wavelengths.
132 - Avi Peer , Igal Aharonovich 2014
Optical oscillators present a powerful optimization mechanism. The inherent competition for the gain resources between possible modes of oscillation entails the prevalence of the most efficient single mode. We harness this ultrafast coherent feedback to optimize an optical field emph{in time}, and show that when an optical oscillator based on a molecular gain medium is synchronously-pumped by ultrashort pulses, a temporally coherent multi mode field can develop that optimally dumps a general, dynamically-evolving vibrational wave-packet, into a emph{single vibrational target state}. Measuring the emitted field opens a new window to visualization and control of fast molecular dynamics. The realization of such a coherent oscillator with hot alkali dimers appears within experimental reach.
Radiation pressure, electrostriction, and photothermal forces have been investigated to evidence backaction, non-linearities and quantum phenomena in cavity optomechanics. We show here through a detailed study of the relative intensity of the cavity mechanical modes observed when exciting with pulsed lasers close to the GaAs optical gap that optoelectronic forces involving real carrier excitation and deformation potential interaction are the strongest mechanism of light-to-sound transduction in semiconductor GaAs/AlAs distributed Bragg reflector optomechanical resonators. We demonstrate that the ultrafast spatial redistribution of the photoexcited carriers in microcavities with massive GaAs spacers leads to an enhanced coupling to the fundamental 20 GHz vertically polarized mechanical breathing mode. The carrier diffusion along the growth axis of the device can be enhanced by increasing the laser power, or limited by embedding GaAs quantum wells in the cavity spacer, a strategy used here to prove and engineer the optoelectronic forces in phonon generation with real carriers. The wavelength dependence of the observed phenomena provide further proof of the role of optoelectronic forces. The optical forces associated to the different intervening mechanisms and their relevance for dynamical backaction in optomechanics are evaluated using finite-element methods. The results presented open the path to the study of hitherto seldom investigated dynamical backaction in optomechanical solid-state resonators in the presence of optoelectronic forces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا