ترغب بنشر مسار تعليمي؟ اضغط هنا

An on-chip diamond optical parametric oscillator

145   0   0.0 ( 0 )
 نشر من قبل Birgit Hausmann
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient, on-chip optical nonlinear processes are of great interest for the development of compact, robust, low-power consuming systems for applications in spectroscopy, metrology, sensing and classical and quantum optical information processing. Diamond holds promise for these applications, owing to its exceptional properties. However, although significant progress has been made in the development of an integrated diamond photonics platform, optical nonlinearities in diamond have not been explored much apart from Raman processes in bulk samples. Here, we demonstrate optical parametric oscillations (OPO) via four wave mixing (FWM) in single crystal diamond (SCD) optical networks on-chip consisting of waveguide-coupled microring resonators. Threshold powers as low as 20mW are enabled by ultra-high quality factor (1*10^6) diamond ring resonators operating at telecom wavelengths, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the inferred nonlinear refractive index due to the third-order nonlinearity in diamond at telecom wavelengths.



قيم البحث

اقرأ أيضاً

Optical parametric oscillators (OPOs) have been widely used for decades as tunable, narrow linewidth, and coherent light sources for reaching long wavelengths and are attractive for applications such as quantum random number generation and Ising mach ines. To date, waveguide-based OPOs have suffered from relatively high thresholds on the order of hundreds of milliwatts. With the advance in integrated photonic techniques demonstrated by high-efficiency second harmonic generation in aluminum nitride (AlN) photonic microring resonators, highly compact and nanophotonic implementation of parametric oscillation is feasible. Here, we employ phase-matched AlN microring resonators to demonstrate low-threshold parametric oscillation in the telecom infrared band with an on-chip efficiency up to 17% and milliwatt-level output power. A broad phase-matching window is observed, enabling tunable generation of signal and idler pairs over a 180 nm bandwidth across the C band. This result establishes an important milestone in integrated nonlinear optics and paves the way towards chip-based quantum light sources and tunable, coherent radiation for spectroscopy and chemical sensing.
By identifying the similarities between the coupled-wave equations and the parametrically driven nonlinear Schrodinger equation, we unveil the existence condition of the quadratic soliton mode-locked degenerate optical parametric oscillator in the pr eviously unexplored parameter space of near-zero group velocity mismatch. We study the nature of the quadratic solitons and divide their dynamics into two distinctive branches depending on the system parameters. We find the nonlinear interaction between the resonant pump and signal results in phenomena that resemble the dispersive two-photon absorption and the dispersive Kerr effect. Origin of the quadratic soliton perturbation is identified and strategy to mitigate its detrimental effect is developed. Terahertz comb bandwidth and femtosecond pulse duration are attainable in an example periodically poled lithium niobate waveguide resonator in the short-wave infrared and an example orientation-patterned gallium arsenide free-space cavity in the long-wave infrared. The quadratic soliton mode-locking principle can be extended to other material platforms, making it a competitive ultrashort pulse and broadband comb source architecture at the mid-infrared.
Materials with strong $chi^{(2)}$ optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-loss $chi^{(2)}$ materials remains challenging and limi ts the threshold power of on-chip $chi^{(2)}$ OPO. Here we report the first on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase matched, high-quality microring resonator, whose threshold power ($sim$30 $mu$W) is 400 times lower than that in previous $chi^{(2)}$ integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained at a pump power of 93 $mu$W. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase matching and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides an potential platform for realizing photonic neural networks.
We present the first demonstration of all-optical squeezing in an on-chip monolithically integrated CMOS-compatible platform. Our device consists of a low loss silicon nitride microring optical parametric oscillator (OPO) with a gigahertz cavity line width. We measure 1.7 dB (5 dB corrected for losses) of sub-shot noise quantum correlations between bright twin beams generated in the microring four-wave-mixing OPO pumped above threshold. This experiment demonstrates a compact, robust, and scalable platform for quantum optics and quantum information experiments on-chip.
Here we report the first experimental demonstration of light trapping by a refractive index front in a silicon waveguide, the optical push broom effect. The front generated by a fast pump pulse collects and traps the energy of a CW signal with smalle r group velocity and tuned near to the band gap of the Bragg grating introduced in the waveguide. This situation represents an optical analogue of light trapping in a tapered plasmonic waveguide where light is stopped without reflection. The energy of the CW signal is accumulated inside the front and distributed in frequency. In this experiment a 2 ps free carrier front was generated via two photon absorption of the pump in silicon waveguide. It collects approximately a 30 ps long packet of the CW signal. The presented effect can be utilized to compress signals in time and space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا