ﻻ يوجد ملخص باللغة العربية
Recently, white dwarf stars have found a new use in the fundamental physics community. Many prospective theories of the fundamental interactions of Nature allow traditional constants, like the fine structure constant $alpha$, to vary in some way. A study by Berengut et al. (2013) used the Fe/Ni V line measurements made by Preval et al. (2013) from the hot DA white dwarf G191-B2B, in an attempt to detect any variation in $alpha$. It was found that the Fe V lines indicated an increasing alpha, whereas the Ni V lines indicated a decreasing alpha. Possible explanations for this could be misidentification of the lines, inaccurate atomic data, or wavelength dependent distortion in the spectrum. We examine the first two cases by using a high S/N reference spectrum from the hot sdO BD+28$^{circ}$4211 to calibrate the Fe/Ni V atomic data. With this new data, we re-evaluate the work of Berengut et al. (2013) to derive a new constraint on the variation of alpha in a gravitational field.
We present the first numerical simulations of gravitational waves (GWs) passing through a potential well generated by a compact object in 3-D space, with a realistic source waveform derived from numerical relativity for the merger of two black holes.
The presence of gravity generalizes the notion of scale invariance to Weyl invariance, namely, invariance under local rescalings of the metric. In this work, we have computed the Weyl anomaly for various classically scale or Weyl invariant theories,
Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to pr
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distr
When gravitational waves pass near massive astrophysical objects, they can be gravitationally lensed. The lensing can split them into multiple wave-fronts, magnify them, or imprint beating patterns on the waves. Here we focus on the multiple images p