ترغب بنشر مسار تعليمي؟ اضغط هنا

Do the constants of nature couple to strong gravitational fields?

119   0   0.0 ( 0 )
 نشر من قبل Simon Preval
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. P. Preval




اسأل ChatGPT حول البحث

Recently, white dwarf stars have found a new use in the fundamental physics community. Many prospective theories of the fundamental interactions of Nature allow traditional constants, like the fine structure constant $alpha$, to vary in some way. A study by Berengut et al. (2013) used the Fe/Ni V line measurements made by Preval et al. (2013) from the hot DA white dwarf G191-B2B, in an attempt to detect any variation in $alpha$. It was found that the Fe V lines indicated an increasing alpha, whereas the Ni V lines indicated a decreasing alpha. Possible explanations for this could be misidentification of the lines, inaccurate atomic data, or wavelength dependent distortion in the spectrum. We examine the first two cases by using a high S/N reference spectrum from the hot sdO BD+28$^{circ}$4211 to calibrate the Fe/Ni V atomic data. With this new data, we re-evaluate the work of Berengut et al. (2013) to derive a new constraint on the variation of alpha in a gravitational field.

قيم البحث

اقرأ أيضاً

63 - Jian-hua He 2020
We present the first numerical simulations of gravitational waves (GWs) passing through a potential well generated by a compact object in 3-D space, with a realistic source waveform derived from numerical relativity for the merger of two black holes. Unlike the previous work, our analyses focus on the time-domain, in which the propagation of GWs is a well-posed initial-value problem for the hyperbolic equations with rigorous rooting in mathematics and physics. Based on these simulations, we investigate for the first time in realistic 3-D space how the wave nature of GWs affects the speed and waveform of GWs in a potential well. We find that GWs travel faster than the prediction of the Shapiro time-delay in the geometric limit due to the effects of diffraction and wavefront geometry. As the wave speed of GWs is closely related to the locality and wavefront geometry of GWs, which are inherently difficult to be addressed in the frequency-domain, our analyses in the time-domain, therefore, provide the first robust analyses to date on this issue based on solid physics. Moreover, we also investigate, for the first time, the interference between the incident and the scattered waves (the echoes of the incident waves). We find that such interference makes the total lensed waveforms dramatically different from those of the original incident ones not only in the amplitude but also in the phase and pattern, especially for signals near the merger of the two back holes.
The presence of gravity generalizes the notion of scale invariance to Weyl invariance, namely, invariance under local rescalings of the metric. In this work, we have computed the Weyl anomaly for various classically scale or Weyl invariant theories, making particular emphasis on the differences that arise when gravity is taken as a dynamical fluctuation instead of as a non-dynamical background field. We find that the value of the anomaly for the Weyl invariant coupling of scalar fields to gravity is sensitive to the dynamical character of the gravitational field, even when computed in constant curvature backgrounds. We also discuss to what extent those effects are potentially observable.
Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to pr obe their nature is limited by the sensitivity of our detectors. The LIGO/Virgo interferometers are the gravitational-wave equivalent of Galileos telescope. The first few detections represent the beginning of a long journey of exploration. At the current pace of technological progress, it is reasonable to expect that the gravitational-wave detectors available in the 2035-2050s will be formidable tools to explore these fascinating objects in the cosmos, and space-based detectors with peak sensitivities in the mHz band represent one class of such tools. These detectors have a staggering discovery potential, and they will address fundamental open questions in physics and astronomy. Are astrophysical black holes adequately described by general relativity? Do we have empirical evidence for event horizons? Can black holes provide a glimpse into quantum gravity, or reveal a classical breakdown of Einsteins gravity? How and when did black holes form, and how do they grow? Are there new long-range interactions or fields in our universe, potentially related to dark matter and dark energy or a more fundamental description of gravitation? Precision tests of black hole spacetimes with mHz-band gravitational-wave detectors will probe general relativity and fundamental physics in previously inaccessible regimes, and allow us to address some of these fundamental issues in our current understanding of nature.
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distr ibution in galaxy clusters, measurements of the polarization of GWs, tests of General Relativity, and constraints on the Hubble parameter. Excited by these prospects, and intrigued by the presence of so-called heavy black holes in the early detections by LIGO-Virgo, we commenced a search for strongly-lensed GWs and possible electromagnetic counterparts in the latter stages of the second LIGO observing run (O2). Here, we summarise our calculation of the detection rate of strongly-lensed GWs, describe our review of BBH detections from O1, outline our observing strategy in O2, summarize our follow-up observations of GW170814, and discuss the future prospects of detection.
When gravitational waves pass near massive astrophysical objects, they can be gravitationally lensed. The lensing can split them into multiple wave-fronts, magnify them, or imprint beating patterns on the waves. Here we focus on the multiple images p roduced by strong lensing. In particular, we investigate strong lensing forecasts, the rate of lensing, and the role of lensing statistics in strong lensing searches. Overall, we find a reasonable rate of lensed detections for double, triple, and quadruple images at the LIGO--Virgo--KAGRA design sensitivity. We also report the rates for A+ and LIGO Voyager and briefly comment on potential improvements due to the inclusion of sub-threshold triggers. We find that most galaxy-lensed events originate from redshifts $z sim 1-4$ and report the expected distribution of lensing parameters for the observed events. Besides forecasts, we investigate the role of lensing forecasts in strong lensing searches, which explore repeated event pairs. One problem associated with the searches is the rising number of event pairs, which leads to a rapidly increasing false alarm probability. We show how knowledge of the expected galaxy lensing time delays in our searches allow us to tackle this problem. Once the time delays are included, the false alarm probability increases linearly (similar to non-lensed searches) instead of quadratically with time, significantly improving the search. For galaxy cluster lenses, the improvement is less significant. The main uncertainty associated with these forecasts are the merger-rate density estimates at high redshift, which may be better resolved in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا