ﻻ يوجد ملخص باللغة العربية
When gravitational waves pass near massive astrophysical objects, they can be gravitationally lensed. The lensing can split them into multiple wave-fronts, magnify them, or imprint beating patterns on the waves. Here we focus on the multiple images produced by strong lensing. In particular, we investigate strong lensing forecasts, the rate of lensing, and the role of lensing statistics in strong lensing searches. Overall, we find a reasonable rate of lensed detections for double, triple, and quadruple images at the LIGO--Virgo--KAGRA design sensitivity. We also report the rates for A+ and LIGO Voyager and briefly comment on potential improvements due to the inclusion of sub-threshold triggers. We find that most galaxy-lensed events originate from redshifts $z sim 1-4$ and report the expected distribution of lensing parameters for the observed events. Besides forecasts, we investigate the role of lensing forecasts in strong lensing searches, which explore repeated event pairs. One problem associated with the searches is the rising number of event pairs, which leads to a rapidly increasing false alarm probability. We show how knowledge of the expected galaxy lensing time delays in our searches allow us to tackle this problem. Once the time delays are included, the false alarm probability increases linearly (similar to non-lensed searches) instead of quadratically with time, significantly improving the search. For galaxy cluster lenses, the improvement is less significant. The main uncertainty associated with these forecasts are the merger-rate density estimates at high redshift, which may be better resolved in the future.
Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distr
At supranuclear densities, explored in the core of neutron stars, a strong phase transition from hadronic matter to more exotic forms of matter might be present. To test this hypothesis, binary neutron-star mergers offer a unique possibility to probe
We discuss the phenomenology of gravitational lensing in the purely metric $fleft(chiright)$ gravity, an $f(R)$ gravity where the action of the gravitational field depends on the source mass. We focus on the strong lensing regime in galaxy-galaxy len
Although general relativity (GR) has been precisely tested at the solar system scale, precise tests at a galactic or cosmological scale are still relatively insufficient. Here, in order to test GR at the galactic scale, we use the newly compiled gala