ترغب بنشر مسار تعليمي؟ اضغط هنا

Slow ionized wind and rotating disklike system associated with the high-mass young stellar object G345.4938+01.4677

43   0   0.0 ( 0 )
 نشر من قبل Andr\\'es Guzm\\'an
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andres E. Guzman




اسأل ChatGPT حول البحث

We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40$alpha$, H42$alpha$, and H50$beta$ emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562$-$3959. The HRLs exhibit Voigt profiles, a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need a high-velocity component. The Lorentzian line wings imply electron densities of $5times10^7$ cm$^{-3}$ on average. In addition, we detect SO and SO$_2$ emission arising from a compact ($sim3000$ AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.

قيم البحث

اقرأ أيضاً

We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets towards high-mass young stellar objects (HMYSOs). Here we report observations at 1.4, 2.4, 4.8 and 8.6 GHz, made with angular resolutions of about 7, 4, 2, and 1 arcsec, respectively, towards six objects of a sample of 33 southern HMYSOs thought to be in very early stages of evolution. The objects in the sample were selected from radio and infrared catalogs by having positive radio spectral indices and being luminous (L_bol > 20,000 L_sun), but underluminous in radio emission compared to that expected from its bolometric luminosity. This criteria makes the radio sources good candidates for being ionized jets. As part of this systematic search, two ionized jets have been discovered: one previously published and the other reported here. The rest of the observed candidates correspond to three hypercompact hii regions and two ultracompact hii regions. The two jets discovered are associated with two of the most luminous (70,000 and 100,000 Lsun) HMYSOs known to harbor this type of objects, showing that the phenomena of collimated ionized winds appears in the formation process of stars at least up to masses of ~ 20 M_sun and provides strong evidence for a disk-mediated accretion scenario for the formation of high-mass stars. From the incidence of jets in our sample, we estimate that the jet phase in high-mass protostars lasts for 40,000 yr.
102 - K. Sugiyama , K. Fujisawa , A. Doi 2013
We have measured the internal proper motions of the 6.7 GHz methanol masers associated with Cepheus A (Cep A) HW2 using Very Long Baseline Interferometery (VLBI) observations. We conducted three epochs of VLBI monitoring observations of the 6.7 GHz m ethanol masers in Cep A-HW2 with the Japanese VLBI Network (JVN) over the period between 2006-2008. In 2006, we were able to use phase-referencing to measure the absolute coordinates of the maser emission with an accuracy of a few milliarcseconds. We compared the maser distribution with other molecular line observations that trace the rotating disk. We measured the internal proper motions for 29 methanol maser spots, of which 19 were identified at all three epochs and the remaining ten at only two epochs. The magnitude of proper motions ranged from 0.2 to 7.4 km/s, with an average of 3.1 km/s. Although there are large uncertainties in the observed internal proper motions of the methanol maser spots in Cep A, they are well fitted by a disk that includes both rotation and infall velocity components. The derived rotation and infall velocities at the disk radius of 680 au are 0.5 +- 0.7 and 1.8 +- 0.7 km/s, respectively. Assuming that the modeled disk motion accurately represents the accretion disk around the Cep A-HW2 high-mass YSO, we estimated the mass infall rate to be 3 x 10^{-4} n_8 Msun/yr (n_8 is the gas volume density in units of 10^{8} cm^{-3}). The combination of the estimated mass infall rate and the magnitude of the fitted infall velocity suggests that Cep A-HW2 is at an evolutionary phase of active gas accretion from the disk onto the central high-mass YSO. The infall momentum rate is estimated to be 5 x 10^{-4} n_8 Msun/yr km/s, which is larger than the estimated stellar radiation pressure of the HW2 object, supporting the hypothesis that this object is in an active gas accretion phase.
Solar-mass stars form via circumstellar disk accretion (disk-mediated accretion). Recent findings indicate that this process is likely episodic in the form of accretion bursts, possibly caused by disk fragmentation. Although it cannot be ruled out th at high-mass young stellar objects (HMYSOs; $M>$8 M$_odot$, $L_{bol}>$5$times$10$^3$ L$_odot$) arise from the coalescence of their low-mass brethren, latest results suggest that they more likely form via disks. Accordingly, disk-mediated accretion bursts should occur. Here we report on the discovery of the first disk-mediated accretion burst from a $sim$20 M$_odot$ HMYSO. Our near-infrared images show the brightening of the central source and its outflow cavities. Near-infrared spectroscopy reveals emission lines typical of accretion bursts in low-mass protostars, but orders of magnitude more luminous. Moreover, the energy released and the inferred mass-accretion rate are also orders of magnitude larger. Our results identify disk accretion as the common mechanism of star formation across the entire stellar mass spectrum.
We report on the detection of four rotating massive disks in two regions of high-mass star formation. The disks are perpendicular to known bipolar outflows and turn out to be unstable but long lived. We infer that accretion onto the embedded (proto)s tars must proceed through the disks with rates of ~10E-2 Msun/yr.
Very low-mass Class I protostars have been investigated very little thus far. Variability of these young stellar objects (YSOs) and whether or not they are capable of strong episodic accretion is also left relatively unstudied. We investigate accreti on variability in IRS54, a Class I very low-mass protostar with a mass of M$_{star}$ ~ 0.1 - 0.2 M$_{odot}$. We obtained spectroscopic and photometric data with VLT/ISAAC and VLT/SINFONI in the near-infrared ($J$, $H$, and $K$ bands) across four epochs (2005, 2010, 2013, and 2014). We used accretion-tracing lines (Pa$beta$ and Br$gamma$) and outflow-tracing lines (H$_2$ and [FeII] to examine physical properties and kinematics of the object. A large increase in luminosity was found between the 2005 and 2013 epochs of more than 1 magnitude in the $K$ band, followed in 2014 by a steep decrease. Consistently, the mass accretion rate ($dot{M}_{acc}$) rose by an order of magnitude from ~ 10$^{-8}$ M$_{odot}$ yr$^{-1}$ to ~ $10^{-7}$ M$_{odot}$ yr$^{-1}$ between the two early epochs. The visual extinction ($A_V$) has also increased from ~ 15 mag in 2005 to ~ 24 mag in 2013. This rise in $A_V$ in tandem with the increase in $dot{M}_{acc}$ is explained by the lifting up of a large amount of dust from the disc of IRS54, following the augmented accretion and ejection activity in the YSO, which intersects our line of sight due to the almost edge-on geometry of the disc. Because of the strength and timescales involved in this dramatic increase, this event is believed to have been an accretion burst possibly similar to bursts of EXor-type objects. IRS54 is the lowest mass Class I source observed to have an accretion burst of this type, and therefore potentially one of the lowest mass EXor-type objects known so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا