ﻻ يوجد ملخص باللغة العربية
Very low-mass Class I protostars have been investigated very little thus far. Variability of these young stellar objects (YSOs) and whether or not they are capable of strong episodic accretion is also left relatively unstudied. We investigate accretion variability in IRS54, a Class I very low-mass protostar with a mass of M$_{star}$ ~ 0.1 - 0.2 M$_{odot}$. We obtained spectroscopic and photometric data with VLT/ISAAC and VLT/SINFONI in the near-infrared ($J$, $H$, and $K$ bands) across four epochs (2005, 2010, 2013, and 2014). We used accretion-tracing lines (Pa$beta$ and Br$gamma$) and outflow-tracing lines (H$_2$ and [FeII] to examine physical properties and kinematics of the object. A large increase in luminosity was found between the 2005 and 2013 epochs of more than 1 magnitude in the $K$ band, followed in 2014 by a steep decrease. Consistently, the mass accretion rate ($dot{M}_{acc}$) rose by an order of magnitude from ~ 10$^{-8}$ M$_{odot}$ yr$^{-1}$ to ~ $10^{-7}$ M$_{odot}$ yr$^{-1}$ between the two early epochs. The visual extinction ($A_V$) has also increased from ~ 15 mag in 2005 to ~ 24 mag in 2013. This rise in $A_V$ in tandem with the increase in $dot{M}_{acc}$ is explained by the lifting up of a large amount of dust from the disc of IRS54, following the augmented accretion and ejection activity in the YSO, which intersects our line of sight due to the almost edge-on geometry of the disc. Because of the strength and timescales involved in this dramatic increase, this event is believed to have been an accretion burst possibly similar to bursts of EXor-type objects. IRS54 is the lowest mass Class I source observed to have an accretion burst of this type, and therefore potentially one of the lowest mass EXor-type objects known so far.
Solar-mass stars form via circumstellar disk accretion (disk-mediated accretion). Recent findings indicate that this process is likely episodic in the form of accretion bursts, possibly caused by disk fragmentation. Although it cannot be ruled out th
In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FU
We report the results of VERA multi-epoch VLBI 22 GHz water maser observations of S255IR-SMA1, a massive young stellar object located in the S255 star forming region. By annual parallax the source distance was measured as D = 1.78 +-0.12 kpc and the
Aims: Accretion rates in low-mass protostars can be highly variable in time. Each accretion burst is accompanied by a temporary increase in luminosity, heating up the circumstellar envelope and altering the chemical composition of the gas and dust. T
The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star forming region carried out using the VLT/X-Sh