ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase sensitivity approaching quantum Cramer-Rao bound in a modified SU(1,1) interferometer

193   0   0.0 ( 0 )
 نشر من قبل Jian-Dong Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SU(1,1) interferometers, based on the usage of nonlinear elements, are superior to passive interferometers in phase sensitivity. However, the SU(1,1) interferometer cannot make full use of photons carrying phase information as the second nonlinear element annihilates some of the photons inside. Here, we focus on improving phase sensitivity and propose a new protocol based on a modified SU(1,1) interferometer, where the second nonlinear element is replaced by a beam splitter. We utilize two coherent states as inputs and implement balanced homodyne measurement at the output. Our analysis suggests that the protocol we propose can achieve sub-shot-noise-limited phase sensitivity and is robust against photon loss and background noise. Our work is important for practical quantum metrology using SU(1,1) interferometers.



قيم البحث

اقرأ أيضاً

115 - Dong Li , Chun-Hua Yuan , Z. Y. Ou 2013
We theoretically study the phase sensitivity of the SU(1,1) interferometer with a coherent light together with a squeezed vacuum input case using the method of homodyne. We find that the homodyne detection has better sensitivity than the intensity de tection under this input case. For a certain intensity of coherent light (squeezed light) input, the relative phase sensitivity is not always better with increasing the squeezed strength (coherent light strength). The phase sensitivity can reach the Heisenberg limit only under a certain moderate parameter interval, which can be realized with current experiment ability.
The quantum stochastic phase estimation has many applications in the precise measurement of various physical parameters. Similar to the estimation of a constant phase, there is a standard quantum limit for stochastic phase estimation, which can be ob tained with the Mach-Zehnder interferometer and coherent input state. Recently, it has been shown that the stochastic standard quantum limit can be surpassed with non-classical resources such as the squeezed light. However, practical methods to achieve the quantum enhancement in the stochastic phase estimation remains largely unexplored. Here we propose a method utilizing the SU(1,1) interferometer and coherent input states to estimate a stochastic optical phase. As an example, we investigate the Ornstein-Uhlenback stochastic phase. We analyze the performance of this method for three key estimation problems: prediction, tracking and smoothing. The results show significant reduction of the mean square error compared with the Mach-Zehnder interferometer under the same photon number flux inside the interferometers. In particular, we show that the method with the SU(1,1) interferometer can achieve the fundamental quantum scaling, the stochastic Heisenberg scaling, and surpass the precision of the canonical measurement.
We theoretically investigate the phase sensitivity with parity detection on an SU(1,1) interferometer with a coherent state combined with a squeezed vacuum state. This interferometer is formed with two parametric amplifiers for beam splitting and rec ombination instead of beam splitters. We show that the sensitivity of estimation phase approaches Heisenberg limit and give the corresponding optimal condition. Moreover, we derive the quantum Cramer-Rao bound of the SU(1,1) interferometer.
115 - Wei Du , Jia Kong , Jun Jia 2020
The use of squeezing and entanglement allows advanced interferometers to detect signals that would otherwise be buried in quantum mechanical noise. High sensitivity instruments including magnetometers and gravitational wave detectors have shown enhan ced signal-to-noise ratio (SNR) by injecting single-mode squeezed light into SU(2) interferometers, e.g. the Mach-Zehnder or Michelson topologies. The quantum enhancement in this approach is sensitive to losses, which break the fragile quantum correlations in the squeezed state. In contrast, SU(1,1) interferometers achieve quantum enhancement by noiseless amplification; they noiselessly increase the signal rather than reducing the quantum noise. Prior work on SU(1,1) interferometers has shown quantum-enhanced SNR11 and insensitivity to losses but to date has been limited to low powers and thus low SNR. Here we introduce a new interferometer topology, the SU(2)-in-SU(1,1) nested interferometer, that combines quantum enhancement, the high SNR possible with a SU(2) interferometer, and the loss tolerance of the SU(1,1) approach. We implement this interferometer using four-wave mixing in a hot atomic vapor and demonstrate 2:2(5) dB of quantum SNR enhancement, in a system with a phase variance nearly two orders of magnitude below that of any previous loss-tolerant enhancement scheme. The new interferometer enables new possibilities such as beyond-shot-noise sensing with wavelengths for which efficient detectors are not available.
256 - Dong Li , Chun-hua Yuan , Yao Yao 2018
We theoretically study the effects of loss on the phase sensitivity of an SU(1,1) interferometer with parity detection with various input states. We show that although the sensitivity of phase estimation decreases in the presence of loss, it can stil l beat the shot-noise limit with small loss. To examine the performance of parity detection, the comparison is performed among homodyne detection, intensity detection, and parity detection. Compared with homodyne detection and intensity detection, parity detection has a slight better optimal phase sensitivity in the absence of loss, but has a worse optimal phase sensitivity with a significant amount of loss with one-coherent state or coherent $otimes$ squeezed state input.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا