ﻻ يوجد ملخص باللغة العربية
The d-metal alloy Ni$_{1-x}$V$_{x}$ undergoes a quantum phase transition from a ferromagnetic ground state to a paramagnetic ground state as the vanadium concentration $x$ is increased. We present magnetization, ac-susceptibility and muon-spin relaxation data at several vanadium concentrations near the critical concentration $x_c approx11.6%$ at which the onset of ferromagnetic order is suppressed to zero temperature. Below $x_c$, the muon data reveal a broad magnetic field distribution indicative of long-range ordered ferromagnetic state with spatial disorder. We show evidence of magnetic clusters in the ferromagnetic phase and close to the phase boundary in this disordered itinerant system as an important generic ingredient of a disordered quantum phase transition. In contrast, the temperature dependence of the magnetic susceptibility above $x_c$ is best described in terms of a magnetic quantum Griffiths phase with a power-law distribution of fluctuation rates of dynamic magnetic clusters. At the lowest temperatures, the onset of a short-range ordered cluster-glass phase is recognized by an increase in the muon depolarization in transverse fields and maxima in ac-susceptibility.
Zero (ZF) and longitudinal field (LF) muon spin relaxation data of the {it d}-metal alloy Ni$_{1-x}$V$_{x}$ are presented at several vanadium concentrations $x$ below and above the critical $x_c approx 11$% where long-range ferromagnetic (FM) order i
We report a chemical substitution-induced ferromagnetic quantum critical point in polycrystalline Ni$_{1-x}$Rh$_x$ alloys. Through magnetization and muon spin relaxation measurements, we show that the ferromagnetic ordering temperature is suppressed
Electron-doped Sr(Co{1-x}Ni{x})2As2 single crystals with compositions x = 0 to 0.9 were grown out of self-flux and SrNi2As2 single crystals out of Bi flux. The crystals were characterized using single-crystal x-ray diffraction (XRD), magnetic suscept
We have measured de Haas-van Alphen oscillations of Cr$_{1-x}$V$_x$, $0 le x le 0.05$, at high fields for samples on both sides of the quantum critical point at $x_c=0.035$. For all samples we observe only those oscillations associated with a single
We investigate the structural and critical properties of CrTe1-xSbx with 0.0 leq x leq 0.2. The XRD patterns revealed that Sb-substitution resulted in a pure NiAs-hexagonal structure with P63/mmc (194) space-group. Lattice refinement of the structure