ترغب بنشر مسار تعليمي؟ اضغط هنا

Variations of the stellar initial mass function in the progenitors of massive early-type galaxies and in extreme starburst environments

123   0   0.0 ( 0 )
 نشر من قبل Gilles Chabrier
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. Chabrier




اسأل ChatGPT حول البحث

We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism derived by Hennebelle & Chabrier. We focus on conditions encountered in progenitors of massive early type galaxies and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass for fragmentation in a turbulent medium, instead of the standard thermal Jeans mass for purely gravitational fragmentation, the peak of the IMF in such environments is shifted towards smaller masses, leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments, we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit for the power law exponent $alphasimeq -2.7$, in agreement with recent observational determinations. This steepening is a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the fragmentation process, as incorporated in the Hennebelle-Chabrier theory. We provide analytical parametrizations of these IMFs in such environments, to be used in galaxy evolution calculations. We also calculate the star formation rates and the mass-to-light ratios expected under such extreme conditions and show that they agree well with the values inferred in starburst environments and massive high-redshift galaxies. This reinforces the paradigm of star formation as being a universal process, i.e. the direct outcome of gravitationally unstable fluctuations in a density field initially generated by large scale shock-dominated turbulence. This globally enables us to infer the variations of the stellar IMF and related properties for atypical galactic conditions.



قيم البحث

اقرأ أيضاً

The observed stellar initial mass function (IMF) appears to vary, becoming bottom-heavy in the centres of the most massive, metal-rich early-type galaxies. It is still unclear what physical processes might cause this IMF variation. In this paper, we demonstrate that the abundance of deuterium in the birth clouds of forming stars may be important in setting the IMF. We use models of disc accretion onto low-mass protostars to show that those forming from deuterium-poor gas are expected to have zero-age main sequence masses significantly lower than those forming from primordial (high deuterium fraction) material. This deuterium abundance effect depends on stellar mass in our simple models, such that the resulting IMF would become bottom-heavy - as seen in observations. Stellar mass loss is entirely deuterium-free and is important in fuelling star formation across cosmic time. Using the EAGLE simulation we show that stellar mass loss-induced deuterium variations are strongest in the same regions where IMF variations are observed: at the centres of the most massive, metal-rich, passive galaxies. While our analysis cannot prove that the deuterium abundance is the root cause of the observed IMF variation, it sets the stage for future theoretical and observational attempts to study this possibility.
In this paper we investigate whether the stellar initial mass function of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environm ent through the group catalogue of Wang et al. and used their optical SDSS spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion ($sigma_0$) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths to predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and bimodal (low-mass tapered) IMF slope ($rm Gamma_b$). Consistent with previous studies, we find that $rm Gamma_b$ increases with $sigma_0$, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky-Way-like IMF) at high $sigma_0$. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of $Gamma_b$ on environment or galaxy hierarchy, as measured within the $3$ SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.
185 - T.Treu 2009
We determine an absolute calibration of the initial mass function (IMF) of early-type galaxies, by studying a sample of 56 gravitational lenses identified by the SLACS Survey. Under the assumption of standard Navarro, Frenk & White dark matter halos, a combination of lensing, dynamical, and stellar population synthesis models is used to disentangle the stellar and dark matter contribution for each lens. We define an IMF mismatch parameter alpha=M*(L+D)/M*(SPS) as the ratio of stellar mass inferred by a joint lensing and dynamical models (M*(L+D)) to the current stellar mass inferred from stellar populations synthesis models (M*(SPS)). We find that a Salpeter IMF provides stellar masses in agreement with those inferred by lensing and dynamical models (<log alpha>=0.00+-0.03+-0.02), while a Chabrier IMF underestimates them (<log alpha>=0.25+-0.03+-0.02). A tentative trend is found, in the sense that alpha appears to increase with galaxy velocity dispersion. Taken at face value, this result would imply a non universal IMF, perhaps dependent on metallicity, age, or abundance ratios of the stellar populations. Alternatively, the observed trend may imply non-universal dark matter halos with inner density slope increasing with velocity dispersion. While the degeneracy between the two interpretations cannot be broken without additional information, the data imply that massive early-type galaxies cannot have both a universal IMF and universal dark matter halos.
We extend our initial study of the connection between the UV colour of galaxies and both the inferred stellar mass-to-light ratio, $Upsilon_*$, and a mass-to-light ratio referenced to Salpeter initial mass function (IMF) models of the same age and me tallicity, $Upsilon_*/Upsilon_{Sal}$, using new UV magnitude measurements for a much larger sample of early-type galaxies, ETGs, with dynamically determined mass-to-light ratios. We confirm the principal empirical finding of our first study, a strong correlation between the GALEX FUV-NUV colour and $Upsilon_*$. We show that this finding is not the result of spectral distortions limited to a single passband (eg. metallicity-dependent line-blanketing in the NUV band), or of the analysis methodology used to measure $Upsilon_*$, or of the inclusion or exclusion of the correction for stellar population effects as accounted for using $Upsilon_*/Upsilon_{Sal}$. The sense of the correlation is that galaxies with larger $Upsilon_*$, or larger $Upsilon_*/Upsilon_{Sal}$, are bluer in the UV. We conjecture that differences in the low mass end of the stellar initial mass function, IMF, are related to the nature of the extreme horizontal branch stars generally responsible for the UV flux in ETGs. If so, then UV color can be used to identify ETGs with particular IMF properties and to estimate $Upsilon_*$. We also demonstrate that UV colour can be used to decrease the scatter about the Fundamental Plane and Manifold, and to select peculiar galaxies for follow-up with which to further explore the cause of variations in $Upsilon_*$ and UV colour.
246 - I. Ferreras 2015
Spectroscopic analyses of gravity-sensitive line strengths give growing evidence towards an excess of low-mass stars in massive early-type galaxies (ETGs). Such a scenario requires a bottom-heavy initial mass function (IMF). However, strong constrain ts can be imposed if we take into account galactic chemical enrichment. We extend the analysis of Weidner et al. and consider the functional form of bottom-heavy IMFs used in recent works, where the high-mass end slope is kept fixed to the Salpeter value, and a free parameter is introduced to describe the slope at stellar masses below some pivot mass scale (M<MP=0.5Msun). We find that no such time-independent parameterisation is capable to reproduce the full set of constraints in the stellar populations of massive ETGs - resting on the assumption that the analysis of gravity-sensitive line strengths leads to a mass fraction at birth in stars with mass M<0.5Msun above 60%. Most notably, the large amount of metal-poor gas locked in low-mass stars during the early, strong phases of star formation results in average stellar metallicities [M/H]<-0.6, well below the solar value. The conclusions are unchanged if either the low-mass end cutoff, or the pivot mass are left as free parameters, strengthening the case for a time-dependent IMF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا