ترغب بنشر مسار تعليمي؟ اضغط هنا

Presentability by products for some classes of groups

303   0   0.0 ( 0 )
 نشر من قبل D. Kotschick
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In various classes of infinite groups, we identify groups that are presentable by products, i.e. groups having finite index subgroups which are quotients of products of two commuting infinite subgroups. The classes we discuss here include groups of small virtual cohomological dimension and irreducible Zariski dense subgroups of appropriate algebraic groups. This leads to applications to groups of positive deficiency, to fundamental groups of three-manifolds and to Coxeter groups. For finitely generated groups presentable by products we discuss the problem of whether the factors in a presentation by products may be chosen to be finitely generated.



قيم البحث

اقرأ أيضاً

102 - D. Kotschick , C. Loeh 2010
In this paper we study obstructions to presentability by products for finitely generated groups. Along the way we develop both the concept of acentral subgroups, and the relations between presentability by products on the one hand, and certain geomet ric and measure or orbit equivalence invariants of groups on the other. This leads to many new examples of groups not presentable by products, including all groups with infinitely many ends, the (outer) automorphism groups of free groups, Thompsons groups, and even some elementary amenable groups.
Given a group $G$ and a subset $X subset G$, an element $g in G$ is called quasi-positive if it is equal to a product of conjugates of elements in the semigroup generated by $X$. This notion is important in the context of braid groups, where it has b een shown that the closure of quasi-positive braids coincides with the geometrically defined class of $mathbb{C}$-transverse links. We describe an algorithm that recognizes whether or not an element of a free group is quasi-positive with respect to a basis. Spherical cancellation diagrams over free groups are used to establish the validity of the algorithm and to determine the worst-case runtime.
191 - Tushar Kanta Naik , Neha Nanda , 2019
The twin group $T_n$ is a right angled Coxeter group generated by $n-1$ involutions and the pure twin group $PT_n$ is the kernel of the natural surjection from $T_n$ onto the symmetric group on $n$ symbols. In this paper, we investigate some structur al aspects of these groups. We derive a formula for the number of conjugacy classes of involutions in $T_n$, which quite interestingly, is related to the well-known Fibonacci sequence. We also derive a recursive formula for the number of $z$-classes of involutions in $T_n$. We give a new proof of the structure of $Aut(T_n)$ for $n ge 3$, and show that $T_n$ is isomorphic to a subgroup of $Aut(PT_n)$ for $n geq 4$. Finally, we construct a representation of $T_n$ to $Aut(F_n)$ for $n ge 2$.
278 - Tushar Kanta Naik , Neha Nanda , 2019
The twin group $T_n$ is a right angled Coxeter group generated by $n- 1$ involutions and having only far commutativity relations. These groups can be thought of as planar analogues of Artin braid groups. In this note, we study some properties of twin groups whose analogues are well-known for Artin braid groups. We give an algorithm for two twins to be equivalent under individual Markov moves. Further, we show that twin groups $T_n$ have $R_infty$-property and are not co-Hopfian for $n ge 3$.
In this paper we study prime graphs of finite groups. The prime graph of a finite group $G$, also known as the Gruenberg-Kegel graph, is the graph with vertex set {primes dividing $|G|$} and an edge $p$-$q$ if and only if there exists an element of o rder $pq$ in $G$. In finite group theory, studying the prime graph of a group has been an important topic for the past almost half century. Only recently prime graphs of solvable groups have been characterized in graph theoretical terms only. In this paper, we continue this line of research and give complete characterizations of several classes of groups, including groups of square-free order, metanilpotent groups, groups of cube-free order, and, for any $nin mathbb{N}$, solvable groups of $n^text{th}$-power-free order. We also explore the prime graphs of groups whose composition factors are cyclic or $A_5$ and draw connections to a conjecture of Maslova. We then propose an algorithm that recovers the prime graph from a dual prime graph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا