ترغب بنشر مسار تعليمي؟ اضغط هنا

CANDELS/GOODS-S, CDFS, ECDFS: Photometric Redshifts For Normal and for X-Ray-Detected Galaxies

168   0   0.0 ( 0 )
 نشر من قبل Li-Ting Hsu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). The work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4Ms-CDFS and 250ks-ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources ($sim 96%$). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of AGN/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014, and outlier fractions are $4%$ and $5.4%$ respectively. The results within the CANDELS coverage area are even better as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broad-band photometry. For best accuracy, templates must include emission lines.



قيم البحث

اقرأ أيضاً

We use the deepest and the most comprehensive photometric data currently available for GOODS-South galaxies to measure their photometric redshifts. The photometry includes VLT/VIMOS (U-band), HST/ACS (F435W, F606W, F775W, and F850LP bands), VLT/ISAAC (J-, H-, and Ks-bands), and four Spitzer/IRAC channels (3.6, 4.5, 5.8, and 8.0 micron). The catalog is selected in the z-band (F850LP) and photometry in each band is carried out using the recently completed TFIT algorithm, which performs PSF matched photometry uniformly across different instruments and filters, despite large variations in PSFs and pixel scales. Photometric redshifts are derived using the GOODZ code, which is based on the template fitting method using priors. The code also implements training of the template SED set, using available spectroscopic redshifts in order to minimize systematic differences between the templates and the SEDs of the observed galaxies. Our final catalog covers an area of 153 sq. arcmin and includes photometric redshifts for a total of 32,505 objects. The scatter between our estimated photometric and spectroscopic redshifts is sigma=0.040 with 3.7% outliers to the full z-band depth of our catalog, decreasing to sigma=0.039 and 2.1% outliers at a magnitude limit m(z)<24.5. This is consistent with the best results previously published for GOODS-S galaxies, however, the present catalog is the deepest yet available and provides photometric redshifts for significantly more objects to deeper flux limits and higher redshifts than earlier works. Furthermore, we show that the photometric redshifts estimated here for galaxies selected as dropouts are consistent with those expected based on the Lyman break technique.
66 - B. Mobasher 2003
We use extensive multi-wavelength photometric data from the Great Observatories Origins Deep Survey (GOODS) to estimate photometric redshifts for a sample of 434 galaxies with spectroscopic redshifts in the Chandra Deep Field South. Using the Bayesia n method, which incorporates redshift/magnitude priors, we estimate photometric redshifts for galaxies in the range 18 < R (AB) < 25.5, giving an rms scatter of 0.11. The outlier fraction is < 10%, with the outlier-clipped rms being 0.047. We examine the accuracy of photometric redshifts for several, special sub--classes of objects. The results for extremely red objects are more accurate than those for the sample as a whole, with rms of 0.051 and very few outliers (3%). Photometric redshifts for active galaxies, identified from their X-ray emission, have a dispersion of 0.104, with 10% outlier fraction, similar to that for normal galaxies. Employing a redshift/magnitude prior in this process seems to be crucial in improving the agreement between photometric and spectroscopic redshifts.
We present ASTRODEEP-GS43, a new multiwavelength photometric catalogue of the GOODS-South field, which builds and improves upon the previously released CANDELS catalogue. We provide photometric fluxes and corresponding uncertainties in 43 optical and infrared bands (25 wide and 18 medium filters), as well as photometric redshifts and physical properties of the 34930 CANDELS $H$-detected objects, plus an additional sample of 178 $H$-dropout sources, of which 173 are $Ks$-detected and 5 IRAC-detected. We keep the CANDELS photometry in 7 bands (CTIO $U$, Hubble Space Telescope WFC3 and ISAAC-$K$), and measure from scratch the fluxes in the other 36 (VIMOS, HST ACS, HAWK-I $Ks$, Spitzer IRAC, and 23 from Subaru SuprimeCAM and Magellan-Baade Fourstar) with state-of-the-art techniques of template-fitting. We then compute new photometric redshifts with three different software tools, and take the median value as best estimate. We finally evaluate new physical parameters from SED fitting, comparing them to previously published ones. Comparing to a sample of 3931 high quality spectroscopic redshifts, for the new photo-$z$s we obtain a normalized median absolute deviation (NMAD) of 0.015 with 3.01$%$ of outliers (0.011, 0.22$%$ on the bright end at $I814$<22.5), similarly to the best available published samples of photometric redshifts, such as the COSMOS UltraVISTA catalogue. The ASTRODEEP-GS43 results are in qualitative agreement with previously published catalogues of the GOODS-South field, improving on them particularly in terms of SED sampling and photometric redshift estimates. The catalogue is available for download from the Astrodeep website.
We present a WFC3 F160W ($H$-band) selected catalog in the CANDELS/GOODS-N field containing photometry from the ultraviolet (UV) to the far-infrared (IR), photometric redshifts and stellar parameters derived from the analysis of the multi-wavelength data. The catalog contains 35,445 sources over the 171 arcmin$^{2}$ of the CANDELS F160W mosaic. The 5$sigma$ detection limits (within an aperture of radius 0farcs17) of the mosaic range between $H=27.8$, 28.2 and 28.7 in the wide, intermediate and deep regions, that span approximately 50%, 15% and 35% of the total area. The multi-wavelength photometry includes broad-band data from UV (U band from KPNO and LBC), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), near-to-mid IR (HST/WFC3 F105W, F125W, F140W and F160W, Subaru/MOIRCS Ks, CFHT/Megacam K, and spitzer/IRAC 3.6, 4.5, 5.8, 8.0 $mu$m) and far IR (spitzer/MIPS 24$mu$m, HERSCHEL/PACS 100 and 160$mu$m, SPIRE 250, 350 and 500$mu$m) observations. In addition, the catalog also includes optical medium-band data (R$sim50$) in 25 consecutive bands, $lambda=500$ to 950~nm, from the SHARDS survey and WFC3 IR spectroscopic observations with the G102 and G141 grisms (R$sim210$ and 130). The use of higher spectral resolution data to estimate photometric redshifts provides very high, and nearly uniform, precision from $z=0-2.5$. The comparison to 1,485 good quality spectroscopic redshifts up to $zsim3$ yields $Delta z$/(1+$z_{rm spec}$)$=$0.0032 and an outlier fraction of $eta=$4.3%. In addition to the multi-band photometry, we release added-value catalogs with emission line fluxes, stellar masses, dust attenuations, UV- and IR- based star formation rates and rest-frame colors.
Improving the capabilities of detecting faint X-ray sources is fundamental to increase the statistics on faint high-z AGN and star-forming galaxies. We performed a simultaneous Maximum Likelihood PSF fit in the [0.5-2] keV and [2-7] keV energy bands of the 4 Ms{em Chandra} Deep Field South (CDFS) data at the position of the 34930 CANDELS H-band selected galaxies. For each detected source we provide X-ray photometry and optical counterpart validation. We validated this technique by means of a raytracing simulation. We detected a total of 698 X-ray point-sources with a likelihood $mathcal{L}$$>$4.98 (i.e. $>$2.7$sigma$). We show that the prior knowledge of a deep sample of Optical-NIR galaxies leads to a significant increase of the detection of faint (i.e. $sim$10$^{-17}$ cgs in the [0.5-2] keV band) sources with respect to blind X-ray detections. By including previous X-ray catalogs, this work increases the total number of X-ray sources detected in the 4 Ms CDFS, CANDELS area to 793, which represents the largest sample of extremely faint X-ray sources assembled to date. Our results suggest that a large fraction of the optical counterparts of our X-ray sources determined by likelihood ratio actually coincides with the priors used for the source detection. Most of the new detected sources are likely star-forming galaxies or faint absorbed AGN. We identified a few sources sources with putative photometric redshift z$>$4. Despite the low number statistics and the uncertainties on the photo-z, this sample significantly increases the number of X--ray selected candidate high-z AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا