ترغب بنشر مسار تعليمي؟ اضغط هنا

The ASTRODEEP-GS43 catalogue: new photometry and redshifts for the CANDELS GOODS-South field

85   0   0.0 ( 0 )
 نشر من قبل Emiliano Merlin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ASTRODEEP-GS43, a new multiwavelength photometric catalogue of the GOODS-South field, which builds and improves upon the previously released CANDELS catalogue. We provide photometric fluxes and corresponding uncertainties in 43 optical and infrared bands (25 wide and 18 medium filters), as well as photometric redshifts and physical properties of the 34930 CANDELS $H$-detected objects, plus an additional sample of 178 $H$-dropout sources, of which 173 are $Ks$-detected and 5 IRAC-detected. We keep the CANDELS photometry in 7 bands (CTIO $U$, Hubble Space Telescope WFC3 and ISAAC-$K$), and measure from scratch the fluxes in the other 36 (VIMOS, HST ACS, HAWK-I $Ks$, Spitzer IRAC, and 23 from Subaru SuprimeCAM and Magellan-Baade Fourstar) with state-of-the-art techniques of template-fitting. We then compute new photometric redshifts with three different software tools, and take the median value as best estimate. We finally evaluate new physical parameters from SED fitting, comparing them to previously published ones. Comparing to a sample of 3931 high quality spectroscopic redshifts, for the new photo-$z$s we obtain a normalized median absolute deviation (NMAD) of 0.015 with 3.01$%$ of outliers (0.011, 0.22$%$ on the bright end at $I814$<22.5), similarly to the best available published samples of photometric redshifts, such as the COSMOS UltraVISTA catalogue. The ASTRODEEP-GS43 results are in qualitative agreement with previously published catalogues of the GOODS-South field, improving on them particularly in terms of SED sampling and photometric redshift estimates. The catalogue is available for download from the Astrodeep website.

قيم البحث

اقرأ أيضاً

We present a UV-to-mid infrared multi-wavelength catalog in the CANDELS/GOODS-S field, combining the newly obtained CANDELS HST/WFC3 F105W, F125W, and F160W data with existing public data. The catalog is based on source detection in the WFC3 F160W ba nd. The F160W mosaic includes the data from CANDELS deep and wide observations as well as previous ERS and HUDF09 programs. The mosaic reaches a 5$sigma$ limiting depth (within an aperture of radius 0.17 arcsec) of 27.4, 28.2, and 29.7 AB for CANDELS wide, deep, and HUDF regions, respectively. The catalog contains 34930 sources with the representative 50% completeness reaching 25.9, 26.6, and 28.1 AB in the F160W band for the three regions. In addition to WFC3 bands, the catalog also includes data from UV (U-band from both CTIO/MOSAIC and VLT/VIMOS), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), and infrared (HST/WFC3 F098M, VLT/ISAAC Ks, VLT/HAWK-I Ks, and Spitzer/IRAC 3.6, 4.5, 5.8, 8.0 $mu$m) observations. The catalog is validated via stellar colors, comparison with other published catalogs, zeropoint offsets determined from the best-fit templates of the spectral energy distribution of spectroscopically observed objects, and the accuracy of photometric redshifts. The catalog is able to detect unreddened star-forming (passive) galaxies with stellar mass of 10^{10}M_odot at a 50% completeness level to z$sim$3.4 (2.8), 4.6 (3.2), and 7.0 (4.2) in the three regions. As an example of application, the catalog is used to select both star-forming and passive galaxies at z$sim$2--4 via the Balmer break. It is also used to study the color--magnitude diagram of galaxies at 0<z<4.
We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) pr oject. We combine the effort from ten different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ~80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age < 100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for < 20 Myr sources) if nebular contribution is ignored.
We analyse 14 LBGs at z~2.8-3.8 constituting the only sample where both a spectroscopic measurement of their metallicity and deep IR observations (CANDELS+HUGS survey) are available. Fixing the metallicity of population synthesis models to the observ ed values, we determine best-fit physical parameters under different assumptions about the star-formation history and also consider the effect of nebular emission. For comparison we determine the UV slope of the objects, and use it to estimate their SFR_UV99 by correcting the UV luminosity following Meurer et al. (1999). A comparison between SFR obtained through SED-fitting (SFR_fit) and the SFR_UV99 shows that the latter are underestimated by a factor 2-10, regardless of the assumed SFH. Other SFR indicators (radio, far-IR, X-ray, recombination lines) coherently indicate SFRs a factor of 2-4 larger than SFR_UV99 and in closer agreement with SFR_fit. This discrepancy is due to the solar metallicity implied by the usual beta-A1600 conversion factor. We propose a refined relation, appropriate for sub-solar metallicity LBGs: A1600 = 5.32+1.99beta. This relation reconciles the dust-corrected UV with the SED-fitting and the other SFR indicators. We show that the fact that z~3 galaxies have sub-solar metallicity implies an upward revision by a factor of ~1.5-2 of the global SFRD, depending on the assumptions about the age of the stellar populations. We find very young best-fit ages (10-500 Myrs) for all our objects. From a careful examination of the uncertainties in the fit and the amplitude of the Balmer break we conclude that there is little evidence of the presence of old stellar population in at least half of the LBGs in our sample, suggesting that these objects are probably caught during a huge star-formation burst, rather than being the result of a smooth evolution.
We present a WFC3 F160W ($H$-band) selected catalog in the CANDELS/GOODS-N field containing photometry from the ultraviolet (UV) to the far-infrared (IR), photometric redshifts and stellar parameters derived from the analysis of the multi-wavelength data. The catalog contains 35,445 sources over the 171 arcmin$^{2}$ of the CANDELS F160W mosaic. The 5$sigma$ detection limits (within an aperture of radius 0farcs17) of the mosaic range between $H=27.8$, 28.2 and 28.7 in the wide, intermediate and deep regions, that span approximately 50%, 15% and 35% of the total area. The multi-wavelength photometry includes broad-band data from UV (U band from KPNO and LBC), optical (HST/ACS F435W, F606W, F775W, F814W, and F850LP), near-to-mid IR (HST/WFC3 F105W, F125W, F140W and F160W, Subaru/MOIRCS Ks, CFHT/Megacam K, and spitzer/IRAC 3.6, 4.5, 5.8, 8.0 $mu$m) and far IR (spitzer/MIPS 24$mu$m, HERSCHEL/PACS 100 and 160$mu$m, SPIRE 250, 350 and 500$mu$m) observations. In addition, the catalog also includes optical medium-band data (R$sim50$) in 25 consecutive bands, $lambda=500$ to 950~nm, from the SHARDS survey and WFC3 IR spectroscopic observations with the G102 and G141 grisms (R$sim210$ and 130). The use of higher spectral resolution data to estimate photometric redshifts provides very high, and nearly uniform, precision from $z=0-2.5$. The comparison to 1,485 good quality spectroscopic redshifts up to $zsim3$ yields $Delta z$/(1+$z_{rm spec}$)$=$0.0032 and an outlier fraction of $eta=$4.3%. In addition to the multi-band photometry, we release added-value catalogs with emission line fluxes, stellar masses, dust attenuations, UV- and IR- based star formation rates and rest-frame colors.
The selection of red, passive galaxies in the early Universe is very challenging, especially beyond z~3, and it is crucial to constrain theoretical modelling of the processes responsible for their rapid assembly and abrupt shut-down of the star forma tion. We present here the analysis of ALMA archival observations of 26 out of the 30 galaxies in the deep CANDELS GOODS-South field that we identified as passive at z~3-5 by means of a careful and conservative SED fitting analysis. ALMA data are used to verify the potential contamination from red, dusty but star--forming sources that could enter the sample due to similar optical--nearIR colours. With the exception of a few marginal detections at <3sigma, we could only infer upper limits, both on individual sources and on the stacks. We translated the ALMA continuum measurements into corresponding SFRs, using a variety of far-IR models. These SFRs are compared with those predicted by secondary star-forming solutions of the optical fits and with the expected position of the star formation Main Sequence. This analysis confirms the passive nature of 9 candidates with high confidence and suggests that the classification is correct for at least half of the sample in a statistical sense. For the remaining sources the analysis remain inconclusive because available ALMA data is not deep enough, although the stacking results corroborate their passive nature. Despite the uncertainties, this work provides decisive support to the existence of passive galaxies beyond z~3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا