ﻻ يوجد ملخص باللغة العربية
In this paper we study modular extendability and equimodularity of endomorphisms and E$_0$-semigroups on factors with respect to f.n.s. weights. We show that modular extendability is a property that does not depend on the choice of weights, it is a cocycle conjugacy invariant and it is preserved under tensoring. We say that a modularly extendable E$_0$-semigroup is of type EI, EII or EIII if its modular extension is of type I, II or III, respectively. We prove that all types exist on properly infinite factors. We also compute the coupling index and the relative commutant index for the CAR flows and $q$-CCR flows. As an application, by considering repeated tensors of the CAR flows we show that there are infinitely many non cocycle conjugate non-extendable $E_0$-semigroups on the hyperfinite factors of types II$_1$, II$_{infty}$ and III$_lambda$, for $lambda in (0,1)$.
We study the structure of C*-algebras associated with compactly aligned product systems over group embeddable right LCM-semigroups. Towards this end we employ controlled maps and a controlled elimination method that associates the original cores to t
We study flows on C*-algebras with the Rokhlin property. We show that every Kirchberg algebra carries a unique Rokhlin flow up to cocycle conjugacy, which confirms a long-standing conjecture of Kishimoto. We moreover present a classification theory f
For each subchain $X$ of a chain $X$, let $T_{RE}(X, X)$ denote the semigroup under composition of all full regressive transformations, $alpha:Xrightarrow X$ satisfying $xalphaleq x$ for all $xin X$. Necessary and sufficient conditions for $T_{RE}(X,
Evans-Hudson flows are constructed for a class of quantum dynamical semigroups with unbounded generator on UHF algebras, which appeared in cite{Ma}. It is shown that these flows are unital and covariant. Ergodicity of the flows for the semigroups associated with partial states is also discussed.
An E_0-semigroup is called q-pure if it is a CP-flow and its set of flow subordinates is totally ordered by subordination. The range rank of a positive boundary weight map is the dimension of the range of its dual map. Let K be a separable Hilbert sp