ترغب بنشر مسار تعليمي؟ اضغط هنا

An Energy Efficiency policy for Communications with C-RAN, ICN and Transition Smooth

104   0   0.0 ( 0 )
 نشر من قبل Di Zhang Mr.
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Towards next generation communications, Energy Efficiency (EE) attracts lots of attentions nowadays. Some innovative techniques have been proposed in prior literatures, especially the sleep mechanism of base station (BS). Yet how to sleep and when to sleep are still vague concepts. Another, most of the studies focus on the cellular section or core networks separately while integral and comprehensive version is neglected in prior literatures. In this paper,the integral optimization structure is studied based on cloud radio network (C-RAN) and information centric network (ICN) that raised latest combined with the sleep mode. The original C-RAN and ICN structures are amended in terms of reality application of sleep techniques. While adopting the sleep techniques both in core and cellular, apart from previous works, a transition smooth method that solve the current surge problems which is ignored before is further proposed. Based on the new method, it will be much more feasible to adopt the sleep techniques by knowing the appropriate occasion for transition between sleep and idle mode. Comprehensive computer based simulation results demonstrate that this integer proposal achieves better EE feature with negligible impact on quality of service (QoS) of user equipments (UEs).



قيم البحث

اقرأ أيضاً

The Cloud-Radio Access Network (C-RAN) cellular architecture relies on the transfer of complex baseband signals to and from a central unit (CU) over digital fronthaul links to enable the virtualization of the baseband processing functionalities of di stributed radio units (RUs). The standard design of digital fronthauling is based on either scalar quantization or on more sophisticated point to-point compression techniques operating on baseband signals. Motivated by network-information theoretic results, techniques for fronthaul quantization and compression that improve over point-to-point solutions by allowing for joint processing across multiple fronthaul links at the CU have been recently proposed for both the uplink and the downlink. For the downlink, a form of joint compression, known in network information theory as multivariate compression, was shown to be advantageous under a non-constructive asymptotic information-theoretic framework. In this paper, instead, the design of a practical symbol-by-symbol fronthaul quantization algorithm that implements the idea of multivariate compression is investigated for the C-RAN downlink. As compared to current standards, the proposed multivariate quantization (MQ) only requires changes in the CU processing while no modification is needed at the RUs. The algorithm is extended to enable the joint optimization of downlink precoding and quantization, reduced-complexity MQ via successive block quantization, and variable-length compression. Numerical results, which include performance evaluations over standard cellular models, demonstrate the advantages of MQ and the merits of a joint optimization with precoding.
In this paper, we investigate the coexistence of two technologies that have been put forward for the fifth generation (5G) of cellular networks, namely, network-assisted device-to-device (D2D) communications and massive MIMO (multiple-input multiple- output). Potential benefits of both technologies are known individually, but the tradeoffs resulting from their coexistence have not been adequately addressed. To this end, we assume that D2D users reuse the downlink resources of cellular networks in an underlay fashion. In addition, multiple antennas at the BS are used in order to obtain precoding gains and simultaneously support multiple cellular users using multiuser or massive MIMO technique. Two metrics are considered, namely the average sum rate (ASR) and energy efficiency (EE). We derive tractable and directly computable expressions and study the tradeoffs between the ASR and EE as functions of the number of BS antennas, the number of cellular users and the density of D2D users within a given coverage area. Our results show that both the ASR and EE behave differently in scenarios with low and high density of D2D users, and that coexistence of underlay D2D communications and massive MIMO is mainly beneficial in low densities of D2D users.
Spectrum pooling allows multiple operators, or tenants, to share the same frequency bands. This work studies the optimization of spectrum pooling for the downlink of a multi-tenant Cloud Radio Access Network (C-RAN) system in the presence of inter-te nant privacy constraints. The spectrum available for downlink transmission is partitioned into private and shared subbands, and the participating operators cooperate to serve the user equipments (UEs) on the shared subband. The network of each operator consists of a cloud processor (CP) that is connected to proprietary radio units (RUs) by means of finite-capacity fronthaul links. In order to enable interoperator cooperation, the CPs of the participating operators are also connected by finite-capacity backhaul links. Inter-operator cooperation may hence result in loss of privacy. Fronthaul and backhaul links are used to transfer quantized baseband signals. Standard quantization is considered first. Then, a novel approach based on the idea of correlating quantization noise signals across RUs of different operators is proposed to control the trade-off between distortion at UEs and inter-operator privacy. The problem of optimizing the bandwidth allocation, precoding, and fronthaul/backhaul compression strategies is tackled under constraints on backhaul and fronthaul capacity, as well as on per-RU transmit power and inter-operator privacy. For both cases, the optimization problems are tackled using the concave convex procedure (CCCP), and extensive numerical results are provided.
This paper considers the unavailability of complete channel state information (CSI) in ultra-dense cloud radio access networks (C-RANs). The user-centric cluster is adopted to reduce the computational complexity, while the incomplete CSI is considere d to reduce the heavy channel training overhead, where only large-scale inter-cluster CSI is available. Channel estimation for intra-cluster CSI is also considered, where we formulate a joint pilot allocation and user equipment (UE) selection problem to maximize the number of admitted UEs with fixed number of pilots. A novel pilot allocation algorithm is proposed by considering the multi-UE pilot interference. Then, we consider robust beam-vector optimization problem subject to UEs data rate requirements and fronthaul capacity constraints, where the channel estimation error and incomplete inter-cluster CSI are considered. The exact data rate is difficult to obtain in closed form, and instead we conservatively replace it with its lower-bound. The resulting problem is non-convex, combinatorial, and even infeasible. A practical algorithm, based on UE selection, successive convex approximation (SCA) and semi-definite relaxation approach, is proposed to solve this problem with guaranteed convergence. We strictly prove that semidefinite relaxation is tight with probability 1. Finally, extensive simulation results are presented to show the fast convergence of our proposed algorithm and demonstrate its superiority over the existing algorithms.
124 - Xihua Zou , Wei Pan , Ge Yu 2016
Frequency offset modulation (FOM) is proposed as a new concept to provide both high energy efficiency and high spectral efficiency for communications. In the FOM system, an array of transmitters (TXs) is deployed and only one TX is activated for data transmission at any signaling time instance. The TX index distinguished by a very slight frequency offset among the entire occupied bandwidth is exploited to implicitly convey a bit unit without any power or signal radiation, saving the power and spectral resources. Moreover, the FOM is characterized by removing the stringent requirements on distinguishable spatial channels and perfect priori channel knowledge, while retaining the advantages of no inter-channel interference and no need of inter-antenna synchronization. In addition, a hybrid solution integrating the FOM and the spatial modulation is discussed to further improve the energy efficiency and spectral efficiency. Consequently, the FOM will be an enabling and green solution to support ever-increasing high-capacity data traffic in a variety of interdisciplinary fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا