ترغب بنشر مسار تعليمي؟ اضغط هنا

The complex dust formation zone of the AGB star IRC+10216 probed with CARMA 0.25 arcsec angular resolution molecular observations

131   0   0.0 ( 0 )
 نشر من قبل Jose Pablo Fonfria
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present low spectral resolution molecular interferometric observations at 1.2 mm obtained with the Combined Array for Research in Millimetre-wave Astronomy (CARMA) towards the C-rich AGB star IRC+10216. We have mapped the emission of several lines of SiS, H13CN, SiO, and SiC2 in the ground and first excited vibrational states with a high angular resolution of 0.25 arcsec. These observations have allowed us to partially resolve the emission of the envelope at distances from the star <50 stellar radii (R*), where the stellar wind is mainly accelerated. The structure of the molecular emission has been modelled with a 3D radiation transfer code. The emission of line SiS(v=0,J=14-13) is best reproduced with a set of maser emitting arcs arranged between 5 and 20 R*. The abundance of H13CN with respect to H2 decreases from 8e-7 at 1-5 R* to 3e-7 at 20 R*. The SiO observations are explained with an abundance <2e-8 in the shell-like region between 1 and 5 R*. At this point, the SiO abundance sharply increases up to (2-3)e-7. The vibrational temperature of SiO increases by a factor of 2 due North-East between 20 and 50 R*. SiC2 is formed at the stellar surface with an abundance of 8e-7 decreasing down to 8e-8 at 20 R* probably due to depletion on to dust grains. Several asymmetries are found in the abundance distributions of H13CN, SiO, and SiC2 which define three remarkable directions (North-East, South-Southwest, and South-East) in the explored region of the envelope. There are some differences between the red- and blue-shifted emissions of these molecules suggesting the existence of additional asymmetries in their abundance distributions along the line-of-sight.

قيم البحث

اقرأ أيضاً

Understanding the formation of planetary nebulae remains elusive because in the preceding asymtotic giant branch (AGB) phase these stars are heavily enshrouded in an optically thick dusty envelope. To further understand the morphology of the circumst ellar environments of AGB stars we observe the closest carbon-rich AGB star IRC+10216 in scattered light. When imaged in scattered light at optical wavelengths, IRC+10216 surprisingly shows a narrow equatorial density enhancement, in contrast to the large-scale spherical rings that have been imaged much further out. We use radiative transfer models to interpret this structure in terms of two models: firstly, an equatorial density enhancement, commonly observed in the more evolved post-AGB stars, and secondly, in terms of a dust rings model, where a local enhancement of mass-loss creates a spiral ring as the star rotates. We conclude that both models can be used to reproduce the dark lane in the scattered light images, which is caused by an equatorially density enhancement formed by dense dust rather than a bipolar outflow as previously thought. We are unable to place constraints on the formation of the equatorial density enhancement by a binary system.
We report the detection in IRC+10216 of lines of HNC $J$=3-2 pertaining to 9 excited vibrational states with energies up to $sim$5300 K. The spectrum, observed with ALMA, also shows a surprising large number of narrow, unidentified lines that arise i n the vicinity of the star. The HNC data are interpreted through a 1D--spherical non--local radiative transfer model, coupled to a chemical model that includes chemistry at thermochemical equilibrium for the innermost regions and reaction kinetics for the external envelope. Although unresolved by the present early ALMA data, the radius inferred for the emitting region is $sim$0.06 (i.e., $simeq$ 3 stellar radii), similar to the size of the dusty clumps reported by IR studies of the innermost region ($r <$ 0.3). The derived abundance of HNC relative to H$_2$ is $10^{-8} <$ $chi$(HNC) $< 10^{-6}$, and drops quickly where the gas density decreases and the gas chemistry is dominated by reaction kinetics. Merging HNC data with that of molecular species present throughout the inner envelope, such as vibrationally excited HCN, SiS, CS, or SiO, should allow us to characterize the physical and chemical conditions in the dust formation zone.
The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observ ed the nearest carbon-rich evolved star, IRC+10216, using the PACS (55-210 {mu}m) and SPIRE (194-672 {mu}m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v=1 vibrational level. For SiS these transitions range up to J=124-123, corresponding to energies around 6700K, while the highest detectable transition is J=90-89 for SiO, which corresponds to an energy around 8400K. Both species trace the dust formation zone of IRC+10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggested depletion of SiS and SiO due to accretion onto dust grains.
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of I RC+10216. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J=3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8+-0.5)x10^{-8} for ortho-NH3 and (3.2^{+0.7}_{-0.6})x10^{-8} for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
First results of near-IR adaptive optics (AO)-assisted imaging, interferometry, and spectroscopy of this Luminous Blue Variable (LBV) are presented. They suggest that the Pistol Star is at least double. If the association is physical, it would reinfo rce questions concerning the importance of multiplicity for the formation and evolution of extremely massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا