ترغب بنشر مسار تعليمي؟ اضغط هنا

Metallic Ferroelectricity in the Pyrochlore Cd2Re2O7

182   0   0.0 ( 0 )
 نشر من قبل Ivan Sergienko
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A class of materials known as ``ferroelectric metals was discussed theoretically by Anderson and Blount in 1965 [Phys. Rev. Lett. 14, 217 (1965)], but to date no examples of this class have been reported. Here we present measurements of the elastic moduli of Cd2Re2O7 through the 200 K cubic-to-tetragonal phase transition. A Landau analysis of the moduli reveals that the transition is consistent with Cd2Re2O7 being classified as a ``ferroelectric metal in the weaker sense described by Anderson and Blount (loss of a center of symmetry). First-principles calculations of the lattice instabilities indicate that the dominant lattice instability corresponds to a two-fold degenerate mode with Eu symmetry, and that motions of the O ions forming the O octahedra dominate the energetics of the transition.



قيم البحث

اقرأ أيضاً

The 5d pyrochlore oxide Cd2Re2O7 exhibits successive phase transitions from a cubic pyrochlore structure (phase I) to a tetragonal structure without inversion symmetry below Ts1 of ~200 K (phase II) and further to another noncentrosymmetric tetragona l structure below Ts2 of ~120 K (phase III). The two low-temperature phases may be characterized by odd-parity multipolar orders induced by the Fermi liquid instability of the spin-orbit-coupled metal. To control the tetragonal domains generated by the transitions and to obtain a single-domain crystal for the measurements of anisotropic properties, we prepared single crystals with the (0 0 1) surface and applied biaxial and uniaxial stresses along the plane. Polarizing optical microscopy observations revealed that inducing a small strain of approximately 0.05% could flip the twin domains ferroelastically in a reversible fashion at low temperatures, which evidences that the tetragonal deformation switches at Ts2 between c > a for phase II and c < a for phase III. Resistivity measurements using single-domain crystals under uniaxial stress showed that the anisotropy was maximum at around Ts2 and turned over across Ts2: resistivity along the c axis is larger (smaller) than that along the a axis by ~25% for phase II (III) at around Ts2. These large anisotropies probably originate from spin-dependent scattering in the spin-split Fermi surfaces of the cluster electric toroidal quadrupolar phases of Cd2Re2O7.
We report transverse field and zero field muon spin rotation studies of the superconducting rhenium oxide pyrochlore, Cd2Re2O7. Transverse field measurements (H=0.007 T) show line broadening below Tc, which is characteristic of a vortex state, demons trating conclusively the type-II nature of this superconductor. The penetration depth is seen to level off below about 400 mK (T/Tc~0.4), with a rather large value of lambda (T=0)~7500A. The temperature independent behavior below ~ 400 mK is consistent with a nodeless superconducting energy gap. Zero-field measurements indicate no static magnetic fields developing below the transition temperature.
The superconducting pyrochlore oxide Cd2Re2O7 is revisited with a particular emphasis on the sample-quality issue. The compound has drawn attention as the only superconductor (Tc = 1.0 K) that has been found in the family of {alpha}-pyrochlore oxides since its discovery in 2001. Moreover, it exhibits two characteristic structural transitions from the cubic pyrochlore structure, with the inversion symmetry broken at the first one at 200 K. Recently, it has attracted increasing attention as a candidate spin-orbit coupled metal (SOCM), in which specific Fermi liquid instability is expected to lead to an odd-parity order with spontaneous inversion-symmetry breaking [L. Fu, Phys. Rev. Lett. 115, 026401 (2015)] and parity-mixing superconductivity [V. Kozii and L. Fu: Phys. Rev. Lett. 115 (2015) 207002; Y. Wang et al., Phys. Rev. B 93 (2016) 134512]. We review our previous experimental results in comparison with those of other groups in the light of the theoretical prediction of the SOCM, which we consider meaningful and helpful for future progress in understanding this unique compound.
114 - M. Kenzelmann , A.B. Harris 2006
There is much interest in the physics of materials that show a strong coupling between magnetic and electric degrees of freedom. In a recent paper by Mostovoy a theory is presented that is based on symmetry arguments and leads to quite general claims which we feel merit some further analysis. In particular, Mostovoy concludes that spiral magnets are, in general, ferroelectric. We argue that this conclusion is not generally valid, and that the symmetry of the unit cell has to be taken into account by any symmetry-based magneto-electric coupling theory. In an attempt to avoid further confusion in the search of new multiferroic materials, we identify in this Comment some of the necessary symmetry properties of spiral magnets that can lead to ferroelectricity.
119 - X. W. Dong , S. Dong , K. F. Wang 2010
A series of polycrystalline pyrochlore rare-earth titanate Ho_{2-x}Cr_xTi_2O_7 are synthesized in order to enhance the ferroelectricity of pyrochlore Ho2Ti2O7. For the sample close to the doping level x=0.4, a giant enhancement of polarization P up t o 660muC/m2 from 0.54muC/m2 at x=0 is obtained, accompanied with an increment of ferroelectric transition point Tc up to ~140K from ~60K. A magnetic anomaly at T~140K together with the polarization response to magnetic field, is identified, implying the multiferroic effect in Ho2-xCrxTi2O7.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا