ﻻ يوجد ملخص باللغة العربية
We present a full microscopic theory based on the SU(2) covariant formulation of the quasiclassical formalism to describe the Josephson current through an extended superconductor-normal metal- superconductor (SNS) diffusive junction with an intrinsic spin-orbit coupling (SOC) in the presence of a spin-splitting field h. We demonstrate that the ground state of the junction corresponds to a finite intrinsic phase difference 0 < {phi}0 < 2{pi} between the superconductor electrodes provided that both, h and the SOC-induced SU(2) Lorentz force are finite. In the particular case of a Rashba SOC we present analytic and numerical results for {phi}0 as a function of the strengths of the spin fields, the length of the junction, the temperature and the properties of SN interfaces.
The transmission of Cooper pairs between two weakly coupled superconductors produces a superfluid current and a phase difference; the celebrated Josephson effect. Because of time-reversal and parity symmetries, there is no Josephson current without a
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an
Graphene on silicon carbide (SiC) has proved to be highly successful in Hall conductance quantization for its homogeneity at the centimetre scale. Robust Josephson coupling has been measured in co-planar diffusive Al/monololayer graphene/Al junctions
We study Andreev reflection and Andreev levels $varepsilon$ in Zeeman-split superconductor/Rashba wire/Zeeman-split superconductor junctions by solving the Bogoliubov de-Gennes equation. We theoretically demonstrate that the Andreev levels $varepsilo
We consider a planar SIS-type Josephson junction between diffusive superconductors (S) through an insulating tunnel interface (I). We construct fully self-consistent perturbation theory with respect to the interface conductance. As a result, we find