ﻻ يوجد ملخص باللغة العربية
The transmission of Cooper pairs between two weakly coupled superconductors produces a superfluid current and a phase difference; the celebrated Josephson effect. Because of time-reversal and parity symmetries, there is no Josephson current without a phase difference between two superconductors. Reciprocally, when those two symmetries are broken, an anomalous supercurrent can exist in the absence of phase bias or, equivalently, an anomalous phase shift $varphi_0$ can exist in the absence of a superfluid current. We report on the observation of an anomalous phase shift $varphi_0$ in hybrid Josephson junctions fabricated with the topological insulator Bi$_2$Se$_3$ submitted to an in-plane magnetic field. This anomalous phase shift $varphi_0$ is observed directly through measurements of the current-phase relationship in a Josephson interferometer. This result provides a direct measurement of the spin-orbit coupling strength and open new possibilities for phase-controlled Josephson devices made from materials with strong spin-orbit coupling.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an
We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of spin-orbit coupling breaks the $mathbb{SU}(2)$-spin symmetry and causes the superconducting order parameter to have gene
Current state of the art devices for detecting and manipulating Majorana fermions commonly consist of networks of Majorana wires and tunnel junctions. We study a key ingredient of these networks - a topological Josephson junction with charging energy
Three-dimensional topological insulators (3D-TIs) possess a specific topological order of electronic bands, resulting in gapless surface states via bulk-edge correspondence. Exotic phenomena have been realized in ferromagnetic TIs, such as the quantu
Coupling of Josephson-phase and spin-waves is theoretically studied in a superconductor/ferromagnetic insulator/superconductor (S/FI/S) junction. Electromagnetic (EM) field inside the junction and the Josephson current coupled with spin-waves in FI a