ﻻ يوجد ملخص باللغة العربية
We consider a general family of regularized models for incompressible two-phase flows based on the Allen-Cahn formulation in n-dimensional compact Riemannian manifolds for n=2,3. The system we consider consists of a regularized family of Navier-Stokes equations (including the Navier-Stokes-{alpha}-like model, the Leray-{alpha} model, the Modified Leray-{alpha} model, the Simplified Bardina model, the Navier-Stokes-Voight model and the Navier-Stokes model) for the fluid velocity suitably coupled with a convective Allen-Cahn equation for the (phase) order parameter. We give a unified analysis of the entire three-parameter family of two-phase models using only abstract mapping properties of the principal dissipation and smoothing operators, and then use assumptions about the specific form of the parametrizations, leading to specific models, only when necessary to obtain the sharpest results. We establish existence, stability and regularity results, and some results for singular perturbations, which as special cases include the inviscid limit of viscous models and the {alpha}->0 limit in {alpha}-models. Then, we also show the existence of a global attractor and exponential attractor for our general model, and then establish precise conditions under which each trajectory converges to a single equilibrium by means of a LS inequality. We also derive new results on the existence of global and exponential attractors for the regularized family of Navier-Stokes equations and magnetohydrodynamics models which improve and complement the results of Holst et. al. [J. Nonlinear Science 20, 2010, 523-567]. Finally, our analysis is applied to certain regularized Ericksen-Leslie (RSEL) models for the hydrodynamics of liquid crystals in n-dimensional compact Riemannian manifolds.
We consider a general family of regularized systems for the full Ericksen-Leslie model for the hydrodynamics of liquid crystals in $n$-dimensional compact Riemannian manifolds, $n$=2,3. The system we consider consists of a regularized family of Navie
We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective nonlocal Cahn-Hilliard equation with non-
We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is a diffuse-interface model for essentially immiscible two phase incompressible flows with matched density in a karstic geometry. Existence of finite energy weak soluti
In the present paper, we prove the a priori estimates of Sobolev norms for a free boundary problem of the incompressible inviscid MHD equations in all physical spatial dimensions $n=2$ and 3 by adopting a geometrical point of view used in Christodoul
In this paper, we study nonlinear desingularization of steady vortex rings of three-dimensional incompressible Euler flows. We construct a family of steady vortex rings (with and without swirl) which constitutes a desingularization of the classical c