ﻻ يوجد ملخص باللغة العربية
Synchronising ultra-short (~fs) and focussed laser pulses is a particularly difficult task, as this timescale lies orders of magnitude below the typical range of fast electronic devices. Here we present an optical technique that allows for femtosecond-scale synchronisation of the focal planes of two focussed laser pulses. This technique is virtually applicable to any focussing geometry and relative intensity of the two lasers. Experimental implementation of this technique provides excellent quantitative agreement with theoretical expectations. The proposed technique will prove highly beneficial for the next generation of multiple, petawatt class laser systems.
We discuss the properties of pure multipole beams with well-defined handedness or helicity, with the beam field a simultaneous eigenvector of the squared total angular momentum and its projection along the propagation axis. Under the condition of hem
The generation of ultra-relativistic positron beams with short duration ($tau_{e^+} leq 30$ fs), small divergence ($theta_{e^+} simeq 3$ mrad), and high density ($n_{e^+} simeq 10^{14} - 10^{15}$ cm$^{-3}$) from a fully optical setup is reported. The
The effect of femtosecond laser irradiation on bulk and single-layer MoS2 on silicon oxide is studied. Optical, Field Emission Scanning Electron Microscopy (FESEM) and Raman microscopies were used to quantify the damage. The intensity of A1g and E2g1
Graphene plasmons are of remarkable features that make graphene plasmon elements promising for applications to integrated photonic devices. The fabrication of graphene plasmon components and control over plasmon propagating are of fundamental importa
Controlling the directionality of spin waves is a key ingredient in wave-based computing methods such as magnonics. In this paper, we demonstrate this particular aspect by using an all-optical point-like source of continuous spin waves based on frequ