ترغب بنشر مسار تعليمي؟ اضغط هنا

Femtosecond laser pulse driven caustic spin wave beams

112   0   0.0 ( 0 )
 نشر من قبل Shreyas Muralidhar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Muralidhar




اسأل ChatGPT حول البحث

Controlling the directionality of spin waves is a key ingredient in wave-based computing methods such as magnonics. In this paper, we demonstrate this particular aspect by using an all-optical point-like source of continuous spin waves based on frequency comb rapid demagnetization. The emitted spin waves contain a range of k-vectors and by detuning the applied magnetic field slightly off the ferromagnetic resonance (FMR), we observe X-shaped caustic spin-wave patterns at $70^{circ}$ propagation angles as predicted by theory. When the harmonic of the light source approaches theFMR, the caustic pattern gives way to uniaxial spin-wave propagation perpendicular to the in-plane component of the applied field. This field-controlled propagation pattern and directionality of optically emitted short-wavelength spin waves provide additional degrees of freedom when designing magnonic devices.

قيم البحث

اقرأ أيضاً

Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the magnetic, structural, and chemical stability of individual magnetic nanoparticles excited by single femtosecond laser pulses. We find that the energy transfer from the fs laser pulse to the nanoparticles is limited by the Rayleigh scattering cross section, which in combination with the light absorption of the supporting substrate and protective layers determines the increase in the nanoparticle temperature. We investigate individual Co nanoparticles (8 to 20 nm in size) as a prototypical model system, using x-ray photoemission electron microscopy and scanning electron microscopy upon excitation with single femtosecond laser pulses of varying intensity and polarization. In agreement with calculations, we find no deterministic or stochastic reversal of the magnetization in the nanoparticles up to intensities where ultrafast demagnetization or all-optical switching is typically reported in thin films. Instead, at higher fluences, the laser pulse excitation leads to photo-chemical reactions of the nanoparticles with the protective layer, which results in an irreversible change in the magnetic properties. Based on our findings, we discuss the conditions required for achieving laser-induced switching in isolated nanomagnets.
Ultrafast demagnetization of magnetic layers pumped by a femtosecond laser pulse is accompanied by a nonthermal spin-polarized current of hot electrons. These spin currents are studied here theoretically in a spin valve with noncollinear magnetizatio ns. To this end, we introduce an extended model of superdiffusive spin transport that enables to treat noncollinear magnetic configurations, and apply it to the perpendicular spin valve geometry. We show how spin-transfer torques arise due to this mechanism and calculate their action on the magnetization present, as well as how the latter depends on the thicknesses of the layers and other transport parameters. We demonstrate that there exists a certain optimum thickness of the out-of-plane magnetized spin-current polarizer such that the torque acting on the second magnetic layer is maximal. Moreover, we study the magnetization dynamics excited by the superdiffusive spin-transfer torque due to the flow of hot electrons employing the Landau-Lifshitz-Gilbert equation. Thereby we show that a femtosecond laser pulse applied to one magnetic layer can excite small-angle precessions of the magnetization in the second magnetic layer. We compare our calculations with recent experimental results.
Manipulation of magnetic domain walls via a helicity-independent laser pulse has recently been experimentally demonstrated and various physical mechanisms leading to domain wall dynamics have been discussed. Spin-dependent superdiffusive transport of hot electrons has been identified as one of the possible ways how to affect a magnetic domain wall. Here, we develop a model based on superdiffusive spin-dependent transport to study the laser-induced transport of hot electrons through a smooth magnetic domain wall. We show that the spin transfer between neighboring domains can enhance ultrafast demagnetization in the domain wall. More importantly, our calculations reveal that when the laser pulse is properly focused on to the vicinity of the domain wall, it can excite sufficiently strong spin currents to generate a spin-transfer torque that can rapidly move the magnetic domain wall by several nanometers in several hundreds of femtoseconds, leading to a huge nonequilibrium domain wall velocity.
184 - Wen-Tian Lu , Zhe Yuan 2021
An ultrafast spin current can be induced by femtosecond laser excitation in a ferromagnetic (FM) thin film in contact with a nonmagnetic (NM) metal. The propagation of an ultrafast spin current into NM metal has recently been found in experiments to generate transient spin accumulation. Unlike spin accumulation in equilibrium NM metals that occurs due to spin transport at the Fermi energy, transient spin accumulation involves highly nonequilibrium hot electrons well above the Fermi level. To date, the diffusion and dissipation of this transient spin accumulation has not been well studied. Using the superdiffusive spin transport model, we demonstrate how spin accumulation is generated in NM metals after laser excitation in an FM|NM bilayer. The spin accumulation shows an exponential decay from the FM|NM interface, with the decay length increasing to the maximum value and then decreasing until saturation. By analyzing the ultrafast dynamics of laser-excited hot electrons, the effective mean free path, which can be characterized by the averaged product of the group velocity and lifetime of hot electrons, is found to play a key role. The interface reflectivity has little influence on the spin accumulation in NM metals. Our calculated results are in qualitative agreement with recent experiments.
Wave-based data processing by spin waves and their quanta, magnons, is a promising technique to overcome the challenges which CMOS-based logic networks are facing nowadays. The advantage of these quasi-particles lies in their potential for the realiz ation of energy efficient devices on the micro- to nanometer scale due to their charge-less propagation in magnetic materials. In this paper, the frequency dependence of the propagation direction of caustic-like spin-wave beams in microstructured ferromagnets is studied by micromagnetic simulations. Based on the observed alteration of the propagation angle, an approach to spatially combine and separate spin-wave signals of different frequencies is demonstrated. The presented magnetic structure constitutes a prototype design of a passive circuit enabling frequency-division multiplexing in magnonic logic networks. It is verified that spin-wave signals of different frequencies can be transmitted through the device simultaneously without any interaction or creation of spurious signals. Due to the wave-based approach of computing in magnonic networks, the technique of frequency-division multiplexing can be the basis for parallel data processing in single magnonic devices, enabling the multiplication of the data throughput.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا