ﻻ يوجد ملخص باللغة العربية
The nature of the so-called XYZ states is a long-standing problem. It has been suggested that such particles may be described as compact four-quark states or loosely bound meson molecules. In the present work we analyze the Z_c() -> eta_c rho decay using both approaches. Such channel might provide useful insights on the nature of the Z_c(), helping discriminating between the two different models.
Employing the relativized quark model and the quark-interchange model, we investigate the decay of the charged heavy quarkonium-like states $Z_c(3900)$, $Z_c(4020)$, $Z_c(4430)$, $Z_b(10610)$ and $Z_b(10650)$ into the ground and radially excited heav
The production of the $eta_c (1S)$ state in proton-proton collisions is probed via its decay to the $p bar{p}$ final state with the LHCb detector, in the rapidity range $2.0 < y < 4.5$ and in the meson transverse-momentum range $p_T > 6.5$ GeV/c. The
We identify the recently observed charmonium-like structure $Z_c^pm(3900)$ as the charged partner of the X(3872) state. Using standard techniques of QCD sum rules, we evaluate the three-point function and extract the coupling constants of the $Z_c ,
While the masses of light hadrons have been extensively studied in lattice QCD simulations, there exist only a few exploratory calculations of the strong decay widths of hadronic resonances. We will present preliminary results of a computation of the
We present preliminary results on the $rho$ meson decay width estimated from the scattering phase shift of the I=1 two-pion system. The phase shift is calculated by the finite size formula for non-zero total momentum frame (the moving frame) derived