ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the nature of Z_c states via the eta_c rho decay

179   0   0.0 ( 0 )
 نشر من قبل Alessandro Pilloni
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the so-called XYZ states is a long-standing problem. It has been suggested that such particles may be described as compact four-quark states or loosely bound meson molecules. In the present work we analyze the Z_c() -> eta_c rho decay using both approaches. Such channel might provide useful insights on the nature of the Z_c(), helping discriminating between the two different models.



قيم البحث

اقرأ أيضاً

Employing the relativized quark model and the quark-interchange model, we investigate the decay of the charged heavy quarkonium-like states $Z_c(3900)$, $Z_c(4020)$, $Z_c(4430)$, $Z_b(10610)$ and $Z_b(10650)$ into the ground and radially excited heav y quarkonia via emitting a pion meson. The $Z_c$ and $Z_b$ states are assumed to be hadronic molecules composed of open-flavor heavy mesons. The calculated decay ratios can be compared with the experimental data, which are useful in judging whether the molecule state assignment for the corresponding $Z_c$ or $Z_b$ state is reasonable or not. The theoretical framework constructed in this work will be helpful in revealing the underlying structures of some exotic hadrons.
The production of the $eta_c (1S)$ state in proton-proton collisions is probed via its decay to the $p bar{p}$ final state with the LHCb detector, in the rapidity range $2.0 < y < 4.5$ and in the meson transverse-momentum range $p_T > 6.5$ GeV/c. The cross-section for prompt production of $eta_c (1S)$ mesons relative to the prompt $J/psi$ cross-section is measured, for the first time, to be $sigma_{eta_c (1S)}/sigma_{J/psi} = 1.74 pm 0.29 pm 0.28 pm 0.18 _{B}$ at a centre-of-mass energy $sqrt{s} = 7$ TeV using data corresponding to an integrated luminosity of 0.7 fb$^{-1}$, and $sigma_{eta_c (1S)}/sigma_{J/psi} = 1.60 pm 0.29 pm 0.25 pm 0.17 _{B}$ at $sqrt{s} = 8$ TeV using 2.0 fb$^{-1}$. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the $eta_c (1S)$ and $J/psi$ decays to the $p bar{p}$ final state. In addition, the inclusive branching fraction of $b$-hadron decays into $eta_c (1S)$ mesons is measured, for the first time, to be $B ( b rightarrow eta_c X ) = (4.88 pm 0.64 pm 0.29 pm 0.67 _{B}) times 10^{-3}$, where the third uncertainty includes also the uncertainty on the $J/psi$ inclusive branching fraction from $b$-hadron decays. The difference between the $J/psi$ and $eta_c (1S)$ meson masses is determined to be $114.7 pm 1.5 pm 0.1$ MeV/c$^2$.
We identify the recently observed charmonium-like structure $Z_c^pm(3900)$ as the charged partner of the X(3872) state. Using standard techniques of QCD sum rules, we evaluate the three-point function and extract the coupling constants of the $Z_c , J/psi , pi^+$ and $Z_c , eta_c , rho^+$ vertices and the corresponding decay widths in these channels. The good agreement with the experimental data gives support to the tetraquark picture of this state.
235 - J. Frison , S. Durr , Z. Fodor 2010
While the masses of light hadrons have been extensively studied in lattice QCD simulations, there exist only a few exploratory calculations of the strong decay widths of hadronic resonances. We will present preliminary results of a computation of the rho meson width obtained using $N_f=2+1$ flavor simulations. The work is based on Luschers formalism and its extension to moving frames.
We present preliminary results on the $rho$ meson decay width estimated from the scattering phase shift of the I=1 two-pion system. The phase shift is calculated by the finite size formula for non-zero total momentum frame (the moving frame) derived by Rummukainen and Gottlieb, using the $N_f=2$ improved Wilson fermion action at $m_pi/m_rho=0.41$ and $L=2.53 {rm fm}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا