ترغب بنشر مسار تعليمي؟ اضغط هنا

A realization of a quasi-random walk for atoms in time-dependent optical potentials

57   0   0.0 ( 0 )
 نشر من قبل Claudiu Genes
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the time dependent dynamics of an atom in a two-color pumped cavity, longitudinally through a side mirror and transversally via direct driving of the atomic dipole. The beating of the two driving frequencies leads to a time dependent effective optical potential that forces the atom into a non-trivial motion, strongly resembling a discrete random walk behavior between lattice sites. We provide both numerical and analytical analysis of such a quasi-random walk behavior.

قيم البحث

اقرأ أيضاً

We introduce quantum walks with a time-dependent coin, and show how they include, as a particular case, the generalized quantum walk recently studied by Wojcik et al. {[}Phys. Rev. Lett. textbf{93}, 180601(2004){]} which exhibits interesting dynamica l localization and quasiperiodic dynamics. Our proposal allows for a much easier implementation of this particular rich dynamics than the original one. Moreover, it allows for an additional control on the walk, which can be used to compensate for phases appearing due to external interactions. To illustrate its feasibility, we discuss an example using an optical cavity. We also derive an approximated solution in the continuous limit (long--wavelength approximation) which provides physical insight about the process.
We report on the possibility of controlling quantum random walks with a step-dependent coin. The coin is characterized by a (single) rotation angle. Considering different rotation angles, one can find diverse probability distributions for this walk i ncluding: complete localization, Gaussian and asymmetric likes. In addition, we explore the entropy of walk in two contexts; for probability density distributions over position space and walkers internal degrees of freedom space (coin space). We show that entropy of position space can decrease for a step-dependent coin with the step-number, quite in contrast to a walk with step-independent coin. For entropy of coin space, a damped oscillation is found for walk with step-independent coin while for a step-dependent coin case, the behavior of entropy depends on rotation angle. In general, we demonstrate that quantum walks with simple initiatives may exhibit a quite complex and varying behavior if step-dependent coins are applied. This provides the possibility of controlling quantum random walk with a step-dependent coin.
The probability of a random walker to return to its starting point in dimensions one and two is unity, a theorem first proven by G. Polya. The recurrence probability -- the probability to be found at the origin at a time t, is a power law with a crit ical exponent d/2 in dimensions d=1,2. We report an experiment that directly measures the Laplace transform of the recurrence probability in one dimension using Electromagnetically Induced Transparency (EIT) of coherent atoms diffusing in a vapor-cell filled with buffer gas. We find a regime where the limiting form of the complex EIT spectrum is universal and only depends on the effective dimensionality in which the random recurrence takes place. In an effective one-dimensional diffusion setting, the measured spectrum exhibits power law dependence over two decades in the frequency domain with a critical exponent of 0.56 close to the expected value 0.5. Possible extensions to more elaborate diffusion schemes are briefly discussed.
392 - J. B. Stang , A. T. Rezakhani , 2008
We introduce history-dependent discrete-time quantum random walk models by adding uncorrelated memory terms and also by modifying Hamiltonian of the walker to include couplings with memory-keeping agents. We next numerically study the correlation eff ects in these models. We also propose a correlation exponent as a relevant and promising tool for investigation of correlation or memory (hence non-Markovian) effects. Our analysis can easily be applied to more realistic models in which different regimes may emerge because of competition between different underlying physical mechanisms.
Cooling methods and particle slowers as well as accelerators are basic tools for fundamental research and applications in different fields and systems. We put forward a generic mechanism to scale the momentum of a particle, regardless of its initial position and momentum, by means of a transient harmonic potential. The design of the time-dependent frequency makes use of a linear invariant and inverse techniques drawn from shortcuts to adiabaticity. The timing of the process may be decided beforehand and its influence on the system evolution and final features is analyzed. We address quantum systems but the protocols found are also valid for classical particles. Similar processes are possible as well for position scaling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا