ﻻ يوجد ملخص باللغة العربية
Aims. The importance of radiation to the physical structure of protoplanetary disks cannot be understated. However, protoplanetary disks evolve with time, and so to understand disk evolution and by association, disk structure, one should solve the combined and time-dependent equations of radiation hydrodynamics. Methods. We implement a new implicit radiation solver in the AZEuS adaptive mesh refinement magnetohydrodynamics fluid code. Based on a hybrid approach that combines frequency-dependent ray-tracing for stellar irradiation with non-equilibrium flux limited diffusion, we solve the equations of radiation hydrodynamics while preserving the directionality of the stellar irradiation. The implementation permits simulations in Cartesian, cylindrical, and spherical coordinates, on both uniform and adaptive grids. Results. We present several hydrostatic and hydrodynamic radiation tests which validate our implementation on uniform and adaptive grids as appropriate, including benchmarks specifically designed for protoplanetary disks. Our results demonstrate that the combination of a hybrid radiation algorithm with AZEuS is an effective tool for radiation hydrodynamics studies, and produces results which are competitive with other astrophysical radiation hydrodynamics codes.
Radiative transfer has a strong impact on the collapse and the fragmentation of prestellar dense cores. We present the radiation-hydrodynamics solver we designed for the RAMSES code. The method is designed for astrophysical purposes, and in particula
An implicit method for the ohmic dissipation is proposed. The proposed method is based on the Crank-Nicolson method and exhibits second-order accuracy in time and space. The proposed method has been implemented in the SFUMATO adaptive mesh refinement
The treatment of radiative transfer with multiple radiation sources is a critical challenge in simulations of star formation and the interstellar medium. In this paper we present the novel TreeRay method for solving general radiative transfer problem
We present the newly developed code, GAMER (GPU-accelerated Adaptive MEsh Refinement code), which has adopted a novel approach to improve the performance of adaptive mesh refinement (AMR) astrophysical simulations by a large factor with the use of th
This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in 1, 2, and 3 dimensions,