ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation

127   0   0.0 ( 0 )
 نشر من قبل Sebastian Weidt
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Applying a magnetic field gradient to a trapped ion allows long-wavelength microwave radiation to produce a mechanical force on the ions motion when internal transitions are driven. We demonstrate such a coupling using a single trapped Yb{171}~ion, and use it to produce entanglement between the spin and motional state, an essential step towards using such a field gradient to implement multi-qubit operations.



قيم البحث

اقرأ أيضاً

We demonstrate ground-state cooling of a trapped ion using radio-frequency (RF) radiation. This is a powerful tool for the implementation of quantum operations, where RF or microwave radiation instead of lasers is used for motional quantum state engi neering. We measure a mean phonon number of $overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the n=0 and n=1 Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.
A M{o}lmer-S{o}rensen entangling gate is realized for pairs of trapped $^{111}$Cd$^+$ ions using magnetic-field insensitive clock states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used to generate the comp lete set of four entangled states, which are reconstructed and evaluated with quantum-state tomography. An average target-state fidelity of 0.79 is achieved, limited by available laser power and technical noise. The tomographic reconstruction of entangled states demonstrates universal quantum control of two ion-qubits, which through multiplexing can provide a route to scalable architectures for trapped-ion quantum computing.
We demonstrate spectroscopy and thermometry of individual motional modes in a mesoscopic 2D ion array using entanglement-induced decoherence as a method of transduction. Our system is a $sim$400 $mu$m-diameter planar crystal of several hundred $^9$Be $^+$ ions exhibiting complex drumhead modes in the confining potential of a Penning trap. Exploiting precise control over the $^9$Be$^+$ valence electron spins, we apply a homogeneous spin-dependent optical dipole force to excite arbitrary transverse modes with an effective wavelength approaching the interparticle spacing ($sim$20 olinebreak$mu$m). Center-of-mass displacements below 1 nm are detected via entanglement of spin and motional degrees of freedom.
We demonstrate a coherence time of 2.1(1)~s for electron spin superposition states of a single trapped $^{40}$Ca$^+$ ion. The coherence time, measured with a spin-echo experiment, corresponds to residual rms magnetic field fluctuations $leq$~2.7$time s$10$^{-12}$~T. The suppression of decoherence induced by fluctuating magnetic fields is achieved by combining a two-layer $mu$-metal shield, which reduces external magnetic noise by 20 to 30~dB for frequencies of 50~Hz to 100~kHz, with Sm$_2$Co$_{17}$ permanent magnets for generating a quantizing magnetic field of 0.37~mT. Our results extend the coherence time of the simple-to-operate spin qubit to ultralong coherence times which so far have been observed only for magnetic insensitive transitions in atomic qubits with hyperfine structure.
Quantum simulation of spin models can provide insight into complex problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. Here we study non-equilibrium, quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of $^9$Be$^+$ ions in a Penning trap. We verify entanglement in the form of spin-squeezed states for up to 219 ions, directly observing 4.0$pm$0.9 dB of spectroscopic enhancement. We also observe evidence of non-Gaussian, over-squeezed states in the full counting statistics. We find good agreement with ab-initio theory that includes competition between entanglement and decoherence, laying the groundwork for simulations of the transverse-field Ising model with variable-range interactions, for which numerical solutions are, in general, classically intractable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا